首页> 外文会议>International Seminar on Process Hydrometallurgy >Oxygen Mass Transfer in the Albion Process~(TM): from the Laboratory to the Plant
【24h】

Oxygen Mass Transfer in the Albion Process~(TM): from the Laboratory to the Plant

机译:在albion过程中氧气传递〜(TM):从实验室到植物

获取原文
获取外文期刊封面目录资料

摘要

The successful commissioning and ramp up of the Albion Process~(TM) at the GPM Gold Project relied on the successful scaling up of the process from batch and continuous pilot plant campaigns (Voigt, 2016) Critical information about reaction kinetics and residence time, grind size and pulp density were determined at the laboratory scale and successfully applied to the commercial scale. A limitation of small scale testwork, is that some parameters cannot be measured reliably and scaling up is a function of the physical size of the equipment which isn't possible to test with laboratory scale equipment. Oxygen mass transfer rate is one such parameter since this is a complex interaction of many factors including slurry temperature, solution and slurry chemistry, slurry viscosity, agitator type, dimensions and power, oxygen bubble residence time, oxygen purity, tank geometry and oxygen injection technique. Oxygen generation represents an important operating cost for the Albion Process~(TM). Pivotal to the Albion Process~(TM) operating economically at atmospheric pressure is the capability to efficiently transfer oxygen while utilising as much oxygen injected to the process as possible. To respond to this Glencore Technology developed the HyperSparge~(TM) supersonic gas injector. This paper compares the HyperSparge~(TM) against other sparging techniques to quantify the benefits of oxygen injection via a supersonic gas jet on scale up of the oxygen mass transfer system. The paper then examines plant survey data from the GPM Gold Project to demonstrate the very high oxygen utilisation that can be achieved with a correctly designed oxygen mass transfer system.
机译:GPM Gold项目中的Albion Process的成功调试和增速〜(TM)依赖于批量和连续飞行员活动的成功扩大过程(voigt,2016)关于反应动力学和停留时间,研磨的关键信息在实验室规模确定尺寸和纸浆密度并成功地应用于商业规模。小规模验证的限制,是一些不能可靠地测量的参数,并且缩放是设备的物理尺寸的函数,这是与实验室规模设备进行测试的。氧气传导率是这样一个参数,因为这是许多因素的复杂相互作用,包括浆液温度,溶液和浆料化学,浆料粘度,搅拌器型,尺寸和功率,氧气泡静脉净化时间,氧气纯度,罐几何和氧注射技术。氧气产生代表了α(TM)的重要运营成本。在大气压力下经济地运行的相晶化过程〜(TM)是有效地转移氧的能力,同时利用尽可能多地注入该过程的氧气。要回应本发明的技术开发了超声波〜(TM)超音速注射器。本文将Hypersparge〜(TM)与其他喷射技术进行比较,以通过超声波气体射流量化氧气传质系统的氧气喷射的益处。该论文然后检查GPM金项目的工厂调查数据,以证明具有正确设计的氧气传感器系统可以实现的高氧利用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号