首页> 外文会议>SAE Brake Colloquium Exhibition >Design of Experiments for Effects and Interactions during Brake Emissions Testing Using High-Fidelity Computational Fluid Dynamics
【24h】

Design of Experiments for Effects and Interactions during Brake Emissions Testing Using High-Fidelity Computational Fluid Dynamics

机译:使用高保真计算流体动力学在制动排放测试中的效果和交互实验设计

获取原文

摘要

The investigation and measurement of particle emissions from foundation brakes require the use of a special adaptation of inertia dynamometer test systems. To have proper measurements for particle mass and particle number, the sampling system needs to minimize transport losses and reduce residence times inside the brake enclosure. Existing models and spreadsheets estimate key transport losses (diffusion, turbophoretic, contractions, gravitational, bends, and sampling isokinetics). A significant limitation of such models is that they cannot assess the turbulent flow and associated particle dynamics inside the brake enclosure; which are anticipated to be important. This paper presents a Design of Experiments (DOE) approach using Computational Fluid Dynamics (CFD) to predict the flow within a dynamometer enclosure under relevant operating conditions. The systematic approach allows the quantification of turbulence intensity, mean velocity profiles, and residence times. The factors of the DOE include: a) airflow level, b) brake size, c) rotor style, d) caliper position, e) brake rotation, f) brake rotational speed, and g) fixture style. Numerical simulations are performed using NGA, a high-order, multi-physics large-eddy simulation code. Particles are tracked individually in a Lagrangian manner. The CFD code is coupled with a conservative immersed boundary method to handle complex geometries. The second part of the study investigates the flow behaviour and the associated isokinetics near the sampling plane in the different nozzles that feed the air samples to the various instruments. In order to better understand the transport and fate of solid particles, the model uses a log-normal particle size distribution between 0.55 μm and 20 μm.
机译:基础制动器粒子排放的调查和测量需要使用惯性测力计测试系统的特殊调整。为了对粒子质量和粒子数进行适当的测量,采样系统需要最小化运输损耗并减少制动外壳内的停留时间。现有模型和电子表格估计关键运输损失(扩散,涡轮机,收缩,引力,弯曲和采样等动力学)。对这些模型的显着限制是它们不能评估制动外壳内的湍流和相关粒子动力学;预计这是重要的。本文介绍了使用计算流体动力学(CFD)的实验(DOE)方法的设计,以在相关的操作条件下预测测功机外壳内的流量。系统方法允许定量湍流强度,平均速度分布和停留时间。母菜的因素包括:a)气流水平,b)制动尺寸,c)转子风格,d)卡钳位置,e)制动旋转,f)制动转速,g)夹具风格。使用NGA,高阶多物理大涡模拟代码进行数值模拟。以拉格朗日方式单独跟踪颗粒。 CFD码与保守的浸没边界方法耦合以处理复杂的几何形状。该研究的第二部分研究了在不同喷嘴中的采样平面附近的流动行为和相关的等因石,该喷嘴将空气样本送到各种仪器。为了更好地理解固体颗粒的运输和命运,该模型使用0.55μm和20μm之间的逻辑正常粒度分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号