首页> 美国卫生研究院文献>Zoological Letters >Testing the adaptive value of gastropod shell morphology to flow: a multidisciplinary approach based on morphometrics computational fluid dynamics and a flow tank experiment
【2h】

Testing the adaptive value of gastropod shell morphology to flow: a multidisciplinary approach based on morphometrics computational fluid dynamics and a flow tank experiment

机译:测试腹足动物壳形态对流量的适应性值:基于形态计量学计算流体力学和流量罐实验的多学科方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A major question in stream ecology is how invertebrates cope with flow. In aquatic gastropods, typically, larger and more globular shells with larger apertures are found in lotic (flowing water) versus lentic (stagnant water) habitats. This has been hypothetically linked to a larger foot, and thus attachment area, which has been suggested to be an adaptation against risk of dislodgement by current. Empirical evidence for this is scarce. Furthermore, these previous studies did not discuss the unavoidable increase in drag forces experienced by the snails as a consequence of the increased cross sectional area. Here, using Potamopyrgus antipodarum as a study model, we integrated computational fluid dynamics simulations and a flow tank experiment with living snails to test whether 1) globular shell morphs are an adaptation against dislodgement through lift rather than drag forces, and 2) dislocation velocity is positively linked to foot size, and that the latter can be predicted by shell morphology. The drag forces experienced by the shells were always stronger compared to the lift and lateral forces. Drag and lift forces increased with shell height but not with globularity. Rotating the shells out of the flow direction increased the drag forces, but decreased lift. Our hypothesis that the controversial presence of globular shells in lotic environments could be explained by an adaptation against lift rather than drag forces was rejected. The foot size was only predicted by the size of the shell, not by shell shape or aperture size, showing that the assumed aperture/foot area correlation should be used with caution and cannot be generalized for all aquatic gastropod species. Finally, shell morphology and foot size were not related to the dislodgement speed in our flow tank experiment. We conclude that other traits must play a major role in decreasing dislodgement risk in stream gastropods, e.g., specific behaviours or pedal mucus stickiness. Although we did not find globular shells to be adaptations for reducing dislodgement risk, we cannot rule out that they are still flow-related adaptations. For instance, globular shells are more crush-resistant and therefore perhaps adaptive in terms of diminishing damage caused by tumbling after dislodgement or against lotic crush-type predators.Electronic supplementary materialThe online version of this article (10.1186/s40851-018-0119-6) contains supplementary material, which is available to authorized users.
机译:河流生态学中的一个主要问题是无脊椎动物如何应对水流。在水生腹足动物中,通常在水生(流动的水)栖息地和水生(停滞的水)栖息地中发现更大,孔眼更大的球形壳。据推测,这与更大的脚部以及因此的附着区域有关,已经提出该附着区域适合于抵抗由于电流而脱落的风险。对此的经验证据很少。此外,这些先前的研究没有讨论蜗牛由于横截面积增加而不可避免地增加的阻力。在这里,我们使用Potamopyrgus antipodarum作为研究模型,将计算流体动力学模拟和流水箱实验与活蜗牛进行了集成,以测试1)球形壳的形态是否适合抵抗升力而不是阻力的位移,以及2)脱位速度为与脚的大小成正比,而脚的大小可以通过壳的形态来预测。与升力和侧向力相比,壳体承受的阻力总是更大。阻力和提升力随壳体高度而增加,但不随球状度增加。将壳体从流动方向上移出会增加阻力,但会降低升力。我们的假设认为,在抽水环境中球形壳存在争议的现象可以通过对升力而不是阻力的适应来解释。脚的大小仅由壳的大小预测,而不是由壳的形状或孔的大小预测,这表明假定的孔/脚面积相关性应谨慎使用,不能对所有水生腹足动物物种进行概括。最后,在我们的流量罐实验中,壳的形态和脚的大小与位移速度无关。我们得出的结论是,其他特征必须在减少腹足类动物脚下动物移位风险中起主要作用,例如特定行为或踏板粘液黏性。尽管我们没有发现球状壳可以降低脱臼的风险,但我们不能排除球状壳仍然是与流量相关的适应。例如,球形球体具有更高的抗压碎性,因此可能在适应性方面减少了因移位后翻滚引起的损害或对轻压碎型掠食性动物的损害。电子补充材料本文的在线版本(10.1186 / s40851-018-0119-6 )包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号