首页> 外文会议>International Technical Conference on Clean Energy >INVESTIGATIONS OF FOULING AND SLAGGING IN HIGH TEMPERATURE GASIFICATION AND USE OF THAT INFORMATION TO MINIMIZE THOSE TENDENCIES
【24h】

INVESTIGATIONS OF FOULING AND SLAGGING IN HIGH TEMPERATURE GASIFICATION AND USE OF THAT INFORMATION TO MINIMIZE THOSE TENDENCIES

机译:在高温气化中污垢和粘合的调查以及使用该信息,以最大限度地减少这些趋势

获取原文

摘要

High temperature slagging gasifiers are used to convert a carbon feedstock; typically coal, petcoke, and/or biomass; into the primary desired product of CO and H_2 (called synthesis gas or, shortened to syngas); creating process by-products of carbon char and organic-metallic or mineral impurities. Coal averages about 10 wt pct ash and petcoke about 1 wt pct ash, although values can be higher/lower depending on the source of the feedstock and, in the case of coal, consistency in its geology, mining, and beneficiation. Peak temperatures in slagging gasifiers can range from about 1350-1575°C, creating an environment where ash becomes molten and can remain as individual particles or coalesce to form liquid slag that flows down the gasifier refractory sidewall. Because of the short residence time during gasification (seconds vs minutes) and the physical size and particle size distribution of a carbon feedstock, the gasifier environment is considered as metastable or non-equilibrium. The process by design produces excess carbon as char (partially processed carbon feedstock). As ash particles melt and start to coalesce, they move toward a global thermodynamic equilibrium involving gas, solid, and liquid phases that is dependent on what non-carbon content material exists in the coal. The gas flow rate, feedstock chemistry, gasification temperature, and oxygen partial pressure determine the amount of each phase created. Minerals that contain chlorine or sulfur can also oxidize; forming gases, liquid phases, or particulate that can contribute to deposits or react with material surfaces. Regardless of the source, ash formed from carbon feedstock materials contribute to agglomeration, fouling, or slag issues, the most serious being: 1) poor slag flow cause by high viscosity slag (typically at the exist of the gasifier), or 2) downstream fouling in areas like syngas coolers caused by particulate buildup that require periodic cleaning and that impact overall system efficiency. Fouling and slagging issues are also important in new gasification system designs, such as the Radically Engineered Modular Systems under study by NETL, which will require accurate process control over a wide range of temperatures. In these gasification systems, the potential for agglomeration, fouling, or slag formation at many stages in not known. The causes of fouling and slag buildup can be broken down into areas such as the feedstock material, the processed carbon particle size and size distribution, additives made to the carbon feedstock, the gasifier type, how a carbon feedstock is introduced in a gasifier, the temperature and oxygen partial pressure of gasification, and how the syngas and by-products are removed from a gasifier. Several analytical tools are available to study fouling and slagging - information which can be used to control the gasification environment and minimize those tendencies. This paper will discuss how knowledge of ash chemistry; information from analytical tests and microstructure studies (ash fusion, high temperature controlled atmosphere confocal microscopy, high temperature viscosity, controll atmosphere high temperature thermogravimetric analysis, and thermodynamic calculations) can be used to minimize or control agglomeration, fouling, or disruptive slag tendencies.
机译:高温造渣气化炉用于将碳质原料转化;通常为煤,石油焦,和/或生物质;成CO和H_2的主要希望的产物(称为合成气体或合成,缩短为合成气);副产物的碳焦和有机金属或无机杂质的生成处理。煤平均为约10重%的火山灰和石油焦约1重%的灰分,虽然值可以是高/低这取决于原料的来源,并在煤,一致性的在其地质,采矿,选矿和的情况下。峰值温度在造渣气化炉可以为约1350至1575年℃,创建其中灰变得熔融,并且可以保持为单独的颗粒或聚结,以形成向下气化器耐火侧壁流动的液态炉渣的环境。由于气化(秒VS分钟)和碳原料的物理尺寸和颗粒尺寸分布在短的停留时间,气化器环境被视为亚稳或非平衡。通过设计该工艺产生过量的碳为char(部分加工碳原料)。灰分粒子熔化并开始聚结,它们移向涉及气体,固体和液体相是依赖于什么在煤中存在非碳含量材料的全局热力学平衡。气体流速,原料化学,气化温度和氧气分压确定创建的每个相的量。包含氯或硫也可以氧化矿物;形成气体,液相,或颗粒,可以有助于沉积物或与材料表面反应。无论来源如何,从碳原料的材料形成灰有助于凝聚,污垢,或炉渣的问题,最严重的的存在:1)矿渣流动性差的原因由高粘度矿渣(通常在气化器的存在),或2)下游在污染等引起的,需要定期清洗,并且影响整个系统的效率微粒聚集合成气冷却器领域。沾污结渣问题也是在新的气化系统的设计,比如所研究的根本上工程模块化系统由NETL,这将需要在很宽的温度范围内精确的过程控制很重要。在这些气化系统,在不知道的许多阶段的集聚,污损,或渣形成的潜力。结垢和炉渣堆积的原因可以被分解成不同的区域,如原料,经处理的碳颗粒尺寸和尺寸分布,所述碳原料,气化器类型,碳原料是如何在气化器中引入制成的添加剂,所述温度和气化的氧气分压,以及如何合成气和副产物是从气化器去除。一些分析工具可用来研究污染和造渣 - 这可以用来控制气化环境,并尽量减少这些倾向的信息。本文将讨论灰化学的知识如何;从分析试验和微结构的研究(灰熔融,高温受控气氛共聚焦显微镜,高温粘度,控制研究气氛高温热重分析,和热力学计算)信息可以被用来最小化或控制凝聚,污垢,或破坏性的炉渣倾向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号