首页> 外文学位 >Effects of Temperature, Oxygen Partial Pressure, and Materials Selection on Slag Infiltration into Porous Refractories for Entrained-Flow Gasifiers.
【24h】

Effects of Temperature, Oxygen Partial Pressure, and Materials Selection on Slag Infiltration into Porous Refractories for Entrained-Flow Gasifiers.

机译:温度,氧气分压和材料选择对气流床气化炉中炉渣渗入多孔耐火材料的影响。

获取原文
获取原文并翻译 | 示例

摘要

The penetration rate of molten mineral contents (slag) from spent carbonaceous feedstock into porous ceramic-oxide refractory linings is a critical parameter in determining the lifecycle of integrated gasification combined cycle energy production plants. Refractory linings that withstand longer operation without interruption are desirable because they can mitigate consumable and maintenance costs. Although refractory degradation has been extensively studied for many other high-temperature industrial processes, this work focuses on the mechanisms that are unique to entrained-flow gasification systems. The use of unique feedstock mixtures, temperatures from 1450 °C to 1600 °C, and oxygen partial pressures from 10-7 atm to 10-9 atm pose engineering challenges in designing an optimal refractory material. Experimentation, characterization, and modeling show that gasifier slag infiltration into porous refractory is determined by interactions between the slag and the refractory that either form a physical barrier that impedes fluid flow or induce an increased fluid viscosity that decelerates the velocity of the fluid body. The viscosity of the slag is modified by the thermal profile of the refractory along the penetration direction as well as reactions between the slag and refractory that alter the chemistry, and thereby the thermo-physical properties of the fluid.;A physical model, which considers unidirectional fluid flow of slag through each pore of the porous microstructure of the refractory, sufficiently approximates the penetration depth of the slag into the refractory. Agreement between experiments and the physical model demonstrates that the slag is driven into the refractory by capillary pressure. Since the viscosity of the slag continuously changes as the slag travels through the inherent temperature gradient of the refractory lining, the model incorporates dynamic viscosities that are dependent on both temperature and composition to project depths that are unique to the experimental parameters. The significantly different length scales of the radial and penetration directions of the pores allows for the application of a lubrication approximation onto the momentum equation. This process produces an analytical solution that effectively envelopes the variable viscosity into a single term.;Infiltration experiments reveal that the temperature gradient inherently present along the refractory lining limits penetration. A refractory in near-isothermal conditions demonstrates deeper slag penetration as compared to one that experiences a steeper thermal profile. The decrease in the local temperatures of the slag as it travels deeper into the refractory increases the viscosity of the fluid, which in turn slows the infiltration velocity of fluid body into the pores of the refractory microstructure. With feedstock mixtures that exhibit high iron-oxide concentrations, a transition-metal-oxide, the oxygen partial pressure of the operating atmosphere regulates the penetration of slag into refractory. The viscosity of the slag, which dictates its penetration rate, is influenced by the oxidation state of the Fe cation. Slag penetrations are shallower in oxidizing conditions than they are in reducing conditions because the iron-oxide from the slag solutions into the corundum-structured refractory and the slag is depleted of iron-oxide, increasing the viscosity of slags. Equally, the chemistries of both the refractory and slag materials dictate the course of penetration. Cr2O3-Al2O3 refractory limits mixed feedstock slag penetration through formation of a chromium spinel layer that functions as a physical obstacle against fluid flow. Al2O 3-SiO2 refractory limits eastern coal feedstock slag penetration as a result of refractory dissolution of SiO2, which increases the viscosity of slags.
机译:从废含碳原料到多孔陶瓷氧化物耐火衬里的熔融矿物含量(炉渣)的渗透速率是确定整体气化联合循环能源生产装置的生命周期的关键参数。需要耐久的耐火衬里而不中断的耐火衬里,因为它们可以减轻消耗品和维护成本。尽管已经对许多其他高温工业过程进行了耐火材料降解的广泛研究,但这项工作着眼于气流床气化系统独有的机理。在设计最佳耐火材料时,使用独特的原料混合物,温度在1450°C至1600°C之间以及氧气分压在10-7 atm至10-9 atm之间给工程带来了挑战。实验,表征和建模表明,气化炉渣渗透到多孔耐火材料中是由炉渣与耐火材料之间的相互作用所决定的,这些相互作用形成阻碍流体流动的物理屏障或导致流体粘度增加,从而降低了流体速度。炉渣的粘度通过沿渗透方向的耐火材料的热分布以及炉渣和耐火材料之间的反应改变化学性质,从而改变流体的热物理性质而改变。炉渣通过耐火材料的多孔微结构的每个孔的单向流体流动,足够接近炉渣向耐火材料的渗透深度。实验与物理模型之间的一致性表明,炉渣被毛细压力驱入耐火材料中。由于炉渣的粘度随炉渣通过耐火炉衬的固有温度梯度而不断变化,因此该模型结合了动态粘度,该粘度取决于温度和成分,以投射出实验参数所特有的深度。孔的径向方向和渗透方向的明显不同的长度比例允许将润滑近似应用于动量方程。这个过程产生了一种分析解决方案,该解决方案有效地将可变粘度囊括在一个术语中。渗透实验表明,沿耐火衬里固有存在的温度梯度会限制渗透。与经历较陡的热曲线的熔渣相比,在接近等温条件下的耐火材料显示出更深的熔渣渗透性。随着炉渣更深地进入耐火材料中,炉渣局部温度的降低增加了流体的粘度,这又减慢了流体向耐火材料微结构孔中的渗透速度。对于具有高铁氧化物浓度,过渡金属氧化物的原料混合物,操作气氛的氧分压调节炉渣向耐火材料的渗透。决定炉渣渗透速率的炉渣粘度受Fe阳离子的氧化态影响。在氧化条件下,炉渣渗透比在还原条件下更浅,这是因为从炉渣溶液进入刚玉结构耐火材料的氧化铁和炉渣中的铁氧化物被消耗掉,从而增加了炉渣的粘度。同样,耐火材料和矿渣材料的化学性质决定了渗透的过程。 Cr2O3-Al2O3耐火材料通过形成铬尖晶石层限制了混合原料炉渣的渗透,而铬尖晶石层是阻碍流体流动的物理障碍。由于SiO2的难熔溶解,Al2O 3-SiO2耐火材料限制了东部煤炭原料的炉渣渗透,从而增加了炉渣的粘度。

著录项

  • 作者

    Kaneko, Tetsuya Kenneth.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号