首页> 外文会议>AIAA aerospace sciences meeting >Validity of Miles Equation in Predicting Propellant Slosh Damping in Baffled Tanks at Variable Slosh Amplitude
【24h】

Validity of Miles Equation in Predicting Propellant Slosh Damping in Baffled Tanks at Variable Slosh Amplitude

机译:在可变斜槽幅度下预测推进剂闸阀中预测推进剂斜面阻尼的有效性

获取原文

摘要

Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well-validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (AAV); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.
机译:晃动阻尼的确定是一个非常具有挑战性的任务,因为没有解析解。阻尼物理涉及涡耗散这需要非线性Navier-Stokes方程的完整的解决方案。其结果是,以前的调查主要是通过大量的实验进行。一个系统化的研究是需要了解莫名其妙坦克的阻尼物理学,找出经验万里公式和实验测量值之间的差异,并开发新的半经验关系,以便更好地代表真正的阻尼物理。这项研究的方法是使用计算流体力学(CFD)技术,在挡板的槽中的阻尼机制线索。首先,将1-d Navier-Stokes方程表示在挡板阻尼物理不同尺度和时间尺度被显影并分析。基因座-STREAM-VOF,一个充分验证的CFD在NASA MSFC求解器开发的,用于研究周围的挡板和周围的流体 - 气体界面的涡度字段以突出显示不同的晃动幅度耗散机制。然后以前的测量数据被用于验证CFD阻尼效果。该研究发现了几个关键参数控制流体从一个挡板阻尼:本地晃动幅度挡板厚度(A / T),表面液体深度罐半径(d / R),本地晃动幅度挡板宽度(AAV);和无量纲晃动频率。仿真亮点三项显著阻尼制度,不同的机制占主导地位。该研究证明了数方程和实验测量值之间的先前发现的差异不是由于测量散射而是由于在各种晃动幅度不同的阻尼机构。在使用里程方程的局限性进行了讨论基于流动制度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号