首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech forum >Validity of Miles Equation in Predicting Propellant Slosh Damping in Baffled Tanks at Variable Slosh Amplitude
【24h】

Validity of Miles Equation in Predicting Propellant Slosh Damping in Baffled Tanks at Variable Slosh Amplitude

机译:Miles方程在可变晃荡幅度下带挡板坦克推进剂晃荡阻尼预测中的有效性

获取原文

摘要

Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well-validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (AAV); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.
机译:由于没有分析解决方案,因此确定晃荡阻尼是一项非常具有挑战性的任务。阻尼物理学涉及涡度耗散,这需要非线性Navier-Stokes方程的完整解。结果,先前的研究主要是通过广泛的实验进行的。需要进行系统的研究,以了解折流箱的阻尼物理特性,识别经验英里方程和实验测量值之间的差异,并开发新的半经验关系以更好地表示真实的阻尼物理特性。这项研究的方法是使用计算流体动力学(CFD)技术来阐明折流式储罐的阻尼机理。首先,建立并分析了表示阻尼阻尼物理过程中不同长度尺度和时间尺度的一维Navier-Stokes方程。 Loci-STREAM-VOF是NASA MSFC开发的一种经过充分验证的CFD求解器,用于研究挡板周围和流体-气体界面周围的涡流场,以突出显示不同晃动幅度下的耗散机制。然后使用先前的测量数据来验证CFD阻尼结果。研究发现了几个控制折流板阻尼的关键参数:局部晃动幅度至折流板厚度(A / t),液面深度至罐半径(d / R),局部晃动幅度至折流板宽度(AAV);以及和无量纲的晃动频率。模拟突出显示了三种重要的阻尼机制,其中不同的机制占主导地位。研究证明,先前发现的Miles方程与实验测量值之间的差异不是由于测量分散,而是由于在各种晃动幅度下的阻尼机制不同。基于流态讨论了使用Miles方程的局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号