首页> 外文会议>International Conference Application of Accelerators in Research and Industry >Atomic Data Of Tungsten For Current And Future Uses In Fusion And Plasma Science
【24h】

Atomic Data Of Tungsten For Current And Future Uses In Fusion And Plasma Science

机译:钨的钨原子数据和未来用途融合和等离子体科学

获取原文

摘要

Atomic physics has played an important role throughout the history of experimental plasma physics. For example, accurate knowledge of atomic properties has been crucial for understanding the plasma energy balance and for diagnostic development. With the shift in magnetic fusion research toward high-temperature burning plasmas like those expected to be produced in the ITER tokamak, the atomic physics of tungsten has become important. Tungsten will be a constituent of ITER plasmas because of its use as a plasma-facing material able to withstand high heat loads with lower tritium retention than other possible materials. Already, ITER diagnostics are being developed based on using tungsten radiation. In particular, the ITER Core Imaging X-ray Spectrometer (CIXS), which is designed to measure the core ion temperature and bulk plasma motion, is being based on the x-ray emission of neonlike tungsten ions (W~(64+)). In addition, tungsten emission will at ITER be measured by extreme ultraviolet (EUV) and optical spectrometers to determine its concentration in the plasma and to assess power loss and tungsten sputtering rates. On present-day tokamaks tungsten measurements are therefore being performed in preparation of ITER. Tungsten has very complex spectra and most are still unknown. The WOLFRAM project at Livermore aims to produce data for tungsten in various spectral bands: Lshell x-ray emission for CIXS development, soft x-ray and EUV M- and N-shell tungsten emission for understanding the edge radiation from ITER plasmas as well as from contemporary tokamaks, and O-shell emission for developing spectral diagnostics of the ITER divertor.
机译:原子物理学在实验等离子体物理学历史上发挥了重要作用。例如,对原子特性的准确知识对于了解血浆能量平衡和诊断发育至关重要。随着磁性融合研究的转变,如预期在迭代托卡马克的预期生产的高温燃烧等离子体,钨的原子物理学变得重要。钨是迭代等离子体的组成部分,因为它用作面向等离子体的材料,能够承受高热量负荷,其比其他可能的材料更低。已经基于使用钨辐射开发了ITER诊断。特别地,ITER核心成像X射线光谱仪(CIXS),其被设计为测量所述芯离子温度和体积等离子体运动,正在被基于所述X射线发射neonlike钨离子(W〜(64+)) 。此外,钨发射将通过极端紫外(EUV)和光学光谱仪测量,以确定其在等离子体中的浓度并评估功率损失和钨溅射率。因此,在当前的Tokamaks钨测量,在制备ITER中进行测量。钨有非常复杂的光谱,大多数仍然是未知的。在利弗莫尔旨在用于在各种光谱带钨产品数据的WOLFRAM项目:CIXS发展,软X射线和极紫外M-和N-壳钨发射Lshell X射线​​发射用于从ITER等离子体理解边缘辐射以及从当代托卡马克斯和O-壳发射开发ITER VEREROR的光谱诊断。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号