首页> 外文会议>Annual Conference on Magnetism Magnetic Materials >Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems
【24h】

Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems

机译:针对磁流体热疗优化的单分散磁铁矿纳米粒子:生物系统中的含义

获取原文

摘要

Magnetite (Fe_3O_4) nanoparticles (MNPs) are suitable materials for Magnetic Fluid Hyperthermia (MFH), provided their size is carefully tailored to the applied alternating magnetic field (AMF) frequency. Since aqueous synthesis routes produce polydisperse MNPs that are not tailored for any specific AMF frequency, we have developed a comprehensive protocol for synthesizing highly monodispersed MNPs in organic solvents, specifically tailored for our field conditions (f = 376 kHz, H_0 = 13.4 kA/m) and subsequently transferred them to water using a biocompatible amphophilic polymer. These MNPs (σ_(avg) = 0.175) show truly size-dependent heating rates, indicated by a sharp peak in the specific loss power (SLP, W/g Fe_3O_4) for 16 nm (diameter) particles. For broader size distributions (σ_(avg) = 0.266), we observe a 30% drop in overall SLP. Furthermore, heating measurements in biological medium [Dulbecco's modified Eagle medium (DMEM)+10% fetal bovine serum] show a significant drop for SLP (~30% reduction in 16 nm MNPs). Dynamic Light Scattering (DLS) measurements show particle hydrodynamic size increases over time once dispersed in DMEM, indicating particle agglomeration. Since the effective magnetic relaxation time of MNPs is determined by fractional contribution of the Neel (independent of hydrodynamic size) and Brownian (dependent on hydrodynamic size) components, we conclude that agglomeration in biological medium modifies the Brownian contribution and thus the net heating capacity of MNPs.
机译:磁铁矿(Fe_3O_4)纳米颗粒(的MNP)是用于磁流体热疗(MFH)的合适的材料,只要它们的尺寸被精心定制施加交变磁场(AMF)的频率。由于水性合成路线产生未对任何特定AMF频率定制多分散的MNP,我们已经开发了全面的协议,用于合成在有机溶剂中高度单分散的MNP,专门为我们的现场条件(F = 376千赫,H_0 = 13.4千安/米定制)和随后将它们用生物相容的两亲聚合物转移到水中。这些的MNP(σ_(平均)= 0.175)表现出真正的尺寸相关的加热速率,通过在特定的损耗功率为16纳米的(直径)的颗粒的尖锐峰(SLP,W /克Fe_3O_4)表示。对于更广泛的粒度分布(σ_(平均)= 0.266),我们观察到在整体SLP下降30%。此外,测量加热在生物培养基[Dulbecco改良的Eagle培养基(DMEM)+ 10%胎牛血清]示出了用于一个SLP下降显著(〜16周纳米的MNP减少30%)。动态光散射(DLS)测量显示随着时间的推移颗粒的流体动力学尺寸的增大一次分散在DMEM,表明颗粒团聚。由于的MNP的有效磁弛豫时间是由尼尔(流体动力学尺寸的独立的)和布朗的分数贡献来确定(取决于流体动力学尺寸)组件,我们得出结论在生物介质修改结块布朗贡献并且因此净热容量的MNP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号