首页> 美国卫生研究院文献>Journal of Applied Physics >Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems
【2h】

Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems

机译:优化的磁流体热疗的单分散磁铁矿纳米颗粒:对生物系统的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnetite (Fe3O4) nanoparticles (MNPs) are suitable materials for Magnetic Fluid Hyperthermia (MFH), provided their size is carefully tailored to the applied alternating magnetic field (AMF) frequency. Since aqueous synthesis routes produce polydisperse MNPs that are not tailored for any specific AMF frequency, we have developed a comprehensive protocol for synthesizing highly monodispersed MNPs in organic solvents, specifically tailored for our field conditions (f = 376 kHz, H0 = 13.4 kA∕m) and subsequently transferred them to water using a biocompatible amphiphilic polymer. These MNPs (σavg. = 0.175) show truly size-dependent heating rates, indicated by a sharp peak in the specific loss power (SLP, W∕g Fe3O4) for 16 nm (diameter) particles. For broader size distributions (σavg. = 0.266), we observe a 30% drop in overall SLP. Furthermore, heating measurements in biological medium [Dulbecco’s modified Eagle medium (DMEM) + 10% fetal bovine serum] show a significant drop for SLP (∼30% reduction in 16 nm MNPs). Dynamic Light Scattering (DLS) measurements show particle hydrodynamic size increases over time once dispersed in DMEM, indicating particle agglomeration. Since the effective magnetic relaxation time of MNPs is determined by fractional contribution of the Neel (independent of hydrodynamic size) and Brownian (dependent on hydrodynamic size) components, we conclude that agglomeration in biological medium modifies the Brownian contribution and thus the net heating capacity of MNPs.
机译:磁铁矿(Fe3O4)纳米粒子(MNPs)是磁流体热疗(MFH)的合适材料,条件是其尺寸要根据所施加的交变磁场(AMF)频率精心定制。由于水性合成路线会产生不适用于任何特定AMF频率的多分散MNP,因此我们已经开发了一种综合协议,用于在有机溶剂中合成高度单分散的MNP,特别适合我们的现场条件(f = 376 kHz,H0 = 13.4 kA ∕ m ),然后使用生物相容的两亲聚合物将它们转移到水中。这些MNP(σavg。= 0.175)表现出真正的尺寸依赖性加热速率,由16 nm(直径)颗粒的比损耗功率(SLP,W ∕ g Fe3O4)的尖峰表示。对于更广泛的尺寸分布(σavg。= 0.266),我们观察到总体SLP下降了30%。此外,在生物培养基(Dulbecco改良的Eagle培养基(DMEM)+ 10%的胎牛血清)中进行的加热测量显示SLP显着下降(16 nm MNP降低约30%)。动态光散射(DLS)测量表明,一旦分散在DMEM中,颗粒的流体动力学尺寸就会随时间增加,这表明颗粒发生团聚。由于MNPs的有效磁弛豫时间取决于Neel(与流体力学尺寸无关)和Brownian(取决于流体力学尺寸)成分的分数贡献,因此我们得出结论,生物介质中的团聚会改变Brownian贡献,从而改变净热容量。 MNP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号