首页> 外文学位 >Synthesis, modeling and optimization of iron oxide nanoparticles for magnetic fluid hyperthermia.
【24h】

Synthesis, modeling and optimization of iron oxide nanoparticles for magnetic fluid hyperthermia.

机译:用于磁流体热疗的氧化铁纳米粒子的合成,建模和优化。

获取原文
获取原文并翻译 | 示例

摘要

Magnetic fluid hyperthermia (MFH) is the controlled heating of tissue to febrile temperature ranges to promote cellular damage/death as an alternative cancer therapy. The heat generated in MFH is the result of magnetic nanoparticles responding to an ac-magnetic field. The advantage of this treatment is the possibility of a targeted and triggered treatment which can reduce damage to healthy tissue. Another great potential of the technique is the possibility of combined diagnostics and treatment within a single platform by combing MFH with Magnetic Resonance Imaging (MRI). The fundamental challenges lie in the formulation of the magnetic nanoparticles, specifically increasing and predicting heating rates. While many groups have used nanoparticles made from known toxic materials, this work focuses solely on iron oxide because of its tolerability in vivo.;Heating rates were increased by improving the material properties of the nanoparticles. Theory indicates that heat generation with superparamagnetic particles is intimately linked to particle, size, shape and surface modification. A synthesis method not commonly used for biomedical applications was used to produce monodisperse, highly crystalline, phase pure magnetite nanoparticles with size control from 2--11 nm. However, the as-synthesized particles were not dispersible in aqueous solutions, therefore a coating method was developed to phase transfer the particles. Cytotoxicity studies were performed to optimize the coating method to ensure that the final formulation was not toxic to cells when measured up to concentrations of 1.2 mg Fe/mL.;This work, for the first time, includes the affects of polydispersity and interparticle interactions on heating rates. Models indicate that 10-11 nm particles will result in the highest heat within biologically-compatible limitations. Calorimetry results indicate that heating rates up to 450 W/g Fe3O4 are achievable and that polydispersity decreases the nanoparticle's ability to generate heat. Results indicated that interparticle interactions can arise because of concentration, agglomeration or due to concentration within cells.;Initial MRI relaxivity studies indicate that these nanoparticles show great promise as contrast enhancers, however the maximum working concentration prior to saturation of MR images ∼ 10 mug Fe/mL may be too small to generate sufficient heating rates for MFH.
机译:磁流体热疗(MFH)是将组织控制在发热温度范围内的受控加热方式,以促进细胞损伤/死亡,这是一种替代的癌症治疗方法。 MFH中产生的热量是磁性纳米颗粒响应交流磁场的结果。这种治疗的优点是可以进行靶向治疗和触发治疗,从而减少对健康组织的损害。该技术的另一个巨大潜力是通过将MFH与磁共振成像(MRI)相结合,可以在单个平台内组合进行诊断和治疗。基本挑战在于磁性纳米粒子的配方,特别是增加和预测加热速率。尽管许多研究小组使用了由已知有毒材料制成的纳米粒子,但由于其在体内的耐受性,这项工作仅专注于氧化铁。理论表明,超顺磁性颗粒的发热与颗粒,尺寸,形状和表面改性密切相关。一种通常不用于生物医学应用的合成方法用于生产尺寸控制在2--11 nm之间的单分散,高度结晶的相纯磁铁矿纳米颗粒。然而,合成后的颗粒不能分散在水溶液中,因此开发了一种涂覆方法以使颗粒相转移。进行了细胞毒性研究,以优化包被方法,以确保最终制剂在浓度高达1.2 mg Fe / mL时对细胞无毒;这项工作首次包括多分散性和颗粒间相互作用对细胞的影响。加热速率。模型表明10-11 nm的颗粒将在生物相容性限制内产生最高的热量。量热结果表明,加热速率可达450 W / g Fe3O4,多分散性降低了纳米颗粒的发热能力。结果表明粒子间的相互作用可能是由于浓度,团聚或细胞内浓度引起的;初始MRI弛豫性研究表明,这些纳米粒子显示出很大的前景,可作为对比增强剂,但是在MR图像饱和至10马克铁之前最大工作浓度/ mL可能太小而无法为MFH产生足够的加热速率。

著录项

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号