首页> 外文会议>Conference on Plasma Physics >Nonlinear Dynamics of Magnetic Electron Drift Modes and Self-Organization Phenomena in Turbulent Plasma
【24h】

Nonlinear Dynamics of Magnetic Electron Drift Modes and Self-Organization Phenomena in Turbulent Plasma

机译:湍流等离子体中磁性漂移模式的非线性动力学和自组织现象

获取原文

摘要

It is already well accepted, that nonlinear interaction of short-scale fluctuations in magnetized plasma can generate low-frequency, large-scale nonlinear structures (so called zonal flows and streamers) that play an important role, for example, in controlling plasma transport properties in magnetic confinement systems. Here we investigate the generation of large-scale magnetic structures in magnetic electron drift mode (MEDM) turbulence. These modes are of interest in, e.g.,laser fusion experiments, where they are thought to be responsible for the very strong self-generated magnetic fields which have been observed since the early 1970s. The driving mechanism is the baroclinic effect, i.e.,the fluctuating electron temperature and density gradients should align. To understand nonlinear dynamics of these modes we employ the ansatz of scale separation to distinguish between the small-scale fluctuations of magnetic electron drift modes and the large-scale shear flow pattern generated by turbulence. Then, the evolution equations for mean flow generation are obtained by averaging the model equations for magnetic electron drift modes over fast small-scales. When the large-scale structures are excited, they form an environment for the parent drift waves. The propagation of drift modes in such weakly inhomogeneous media with slowly varying parameters can be conveniently described with the help of a wave kinetic equation for the wave action density in r-k space. The sources of these slow spatial and temporal variations are flow induced velocity perturbations. Finally, the evolution of nonlinearly interacting MEDM is illustrated by a simulation study of the model equations for the different set of parameters.
机译:它已经被广泛接受的是,在磁化等离子体短尺度波动的非线性相互作用可以产生低频,大型非线性其发挥重要作用,例如结构(所谓的带状流和拖缆),在控制等离子体输运性质在磁约束系统。在这里,我们调查大型磁结构在磁电子漂移模式(MEDM)紊流产生。这些模式是在感兴趣的,例如,激光聚变实验,在那里它们被认为是负责从70年代初期已被观察到的非常强的自产生的磁场。该驱动机构是斜压的效果,即,波动电子温度和密度梯度应该对齐。为了理解这些模式,我们采用标分离的拟设磁电子漂移模式的小规模的波动和由湍流产生大规模剪切流动图案之间区分的非线性动力学。然后,对于平均流量产生演化方程通过平均磁电子漂移模式过度快速小尺度模型方程获得。当大型结构激发,它们形成用于在父漂移波的环境。的漂移模式在这样的弱非均匀介质与缓慢变化的参数的传播可以与在R-K空间的波浪作用密度波动力学方程的帮助下被方便地描述。这些缓慢的空间和时间变化的源极流动引起的速度扰动。最后,非线性相互作用MEDM的演变由用于该组不同的参数模型方程的模拟研究示出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号