首页> 外文会议>SPIE Conference on Infrared Technology and Applications >Photoconductive gain in barrier heterostructure infrared detectors
【24h】

Photoconductive gain in barrier heterostructure infrared detectors

机译:屏障异质结构红外探测器的光电导

获取原文
获取外文期刊封面目录资料

摘要

Infrared (IR) detector technologies with the ability to operate near room temperature are important for many applications including chemical identification, surveillance, defense and medical diagnostics. Reducing the need for cryogenics in a detector system can reduce cost, weight and power consumption; simplify the detection system design and allow for widespread usage. In recent years, infrared (IR) detectors based on uni-polar barrier designs have gained interest for their ability to lower dark current and increase a detector's operating temperature. Our group is currently investigating detectors based on the InAs/GaSb strain layer superlattice (SLS) material system that utilize barrier heterostructure engineering. Examples of such engineering designs include pBp, nBn, PbIbN, CBIRD, etc. For this paper I will focus on LW (long wave) pBp structures. Like the built-in barrier in a p-n junction, the heterojunction barrier blocks the majority carriers allowing free movement of photogenerated minority carriers. However, the barrier in a pBp detector, in contrast with a p-n junction depletion layer, does not significantly contribute to generation-recombination (G-R) current due to the lack of a depletion region across the narrow band gap absorber material. Thus such detectors potentially work like a regular photodiode but with significantly reduced dark current from G-R mechanisms. The mechanism of photoconductive (PC) gain has not been fully characterized in such device architectures and in many recent studies has been assumed to be unity. However, studies conducted with similar device structures have shown the presence of PC gain. In this report we will measure and analyze the impact of PC gain in detectors utilizing single unipolar barriers such as the case of pBp detectors.
机译:具有在室温附近操作的红外线(IR)检测器技术对于许多应用来说都很重要,包括化学识别,监控,防御和医疗诊断。减少对探测器系统中低温的需求可以降低成本,重量和功耗;简化检测系统设计并允许广泛使用。近年来,基于单极屏障设计的红外线(IR)探测器对其降低暗电流并增加探测器的操作温度来获得兴趣。我们的小组目前正在根据利用屏障异质结构工程的INAS / GASB应变层超晶格(SLS)材料系统来调查探测器。这种工程设计的示例包括PBP,NBN,PBIBN,CBIRD等。本文,我将专注于LW(长波)PBP结构。与P-n结的内置屏障一样,异质结阻挡阻挡了允许光生制的少数载体的自由运动的多数载体。然而,与P-N结耗尽层相比,PBP检测器中的屏障对由于缺少窄带间隙吸收材料的耗尽区域而没有显着贡献产生 - 重组(G-R)电流。因此,这种检测器可能像常规光电二极管一样工作,但是从G-R机构显着降低了暗电流。光电导(PC)增益的机制尚未完全在这种设备架构中表征,并且在许多最近的研究中被认为是统一的。然而,用类似装置结构进行的研究表明了PC增益的存在。在本报告中,我们将利用单极屏障(如PBP探测器的情况)衡量和分析PC增益在探测器中的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号