首页> 外文会议>American Society for Mass Spectrometry Conference on Mass Spectrometry and Allied Topics >Structures and Activation Energies for Glycosidic Bond Cleavage of Protonated Nucleosides: A Synergy of Theory and Threshold Collision-Induced Dissociation Experiments
【24h】

Structures and Activation Energies for Glycosidic Bond Cleavage of Protonated Nucleosides: A Synergy of Theory and Threshold Collision-Induced Dissociation Experiments

机译:质子化核苷的糖苷键切割的结构和活化能量:理论和阈值碰撞诱导的解离实验的协同作用

获取原文

摘要

Nature makes use of deprotonation, protonation and noncovalent interactions to alter the structures and reactivities of molecules to facilitate various biological functions and chemical transformations. For example, protonation of a nucleic acid can occur along the phosphate backbone, or to the nucleobases and sugar moieties. Intramolecular hydrogen bonding interactions between the nucleobase, phosphate, and sugar moieties stabilize the excess proton and result in changes in the conformation of the phosphate backbone, orientations of the nucleobases, and puckering of the sugars. As the basic building blocks of nucleic acids, the DNA and RNA nucleosides are excellent model systems for elucidating the role that protonation plays in facilitating changes in structure and reactivity associated with the biological processes in which nucleic acids participate. In particular, the effects of protonation on the structures and stabilities of the N-glycosidic bond of the common 2'-deoxyribonucleosides and ribonucleosides are of great interest as these molecules are ubiquitious in nature. A variety of minor or modified nucleosides are also found in nature and/or have been synthesized for pharmaceutical applications. Studies of the effects of various modifications on the stability of the N-glycosidic bond are also important as such knowledge would provide an understanding of the biological reasons for these modifications. In this study, the collision-induced dissociation (CID) behavior of protonated DNA and RNA nucleosides with Xe was studied as a function of kinetic energy using guided ion beam tandem mass spectrometry techniques. Theoretical electronic structure calculations were also performed to support and enhance the experimental studies. The four common DNA nucelosides (2′-deoxyadenosine (dAdo), 2′-deoxycytidine (dCyd), 2′-deoxyguanosine (dGuo), thymidine (thd) and 2′-deoxyuridine) and the four common RNA nucleosides (adenosine (Ado), cytidine (Cyd), guanosine (Guo), and uridine (Urd)) are included in this work to investigate the influence of the nucleobase identity on the structure and stability of their protonated forms. In addition, we also include two minor nucleosides, 2′-deoxyuridine and 5-methyluridine, to determine the effects of 5-methylation on the stability of the uridine/thymidine nucleosides in an effort to understand why nature uses a different form of this nucleobase for the DNA and RNA nucleic acids.
机译:自然利用去质子化,质子化和非共价相互作用来改变分子的结构和反应,以促进各种生物功能和化学转化。例如,核酸的质子化可以沿磷酸盐骨架或核碱基和糖部分发生。核碱基,磷酸盐和糖部分之间的分子内氢键相互作用稳定过量的质子,并导致磷酸盐骨架,核碱基取向的变化变化,以及糖的褶皱。作为核酸的基本结构块,DNA和RNA核苷是优异的模型系统,用于阐明质子化在促进与核酸参与的生物学过程相关的结构和反应性变化方面的作用。特别地,质子化对常见的2'-脱氧核糖核酸核苷和核糖核苷的N-糖苷键的结构和稳定性的影响,因为这些分子本质上普遍地具有很大的兴趣。还发现各种次要或修饰的核苷,和/或已被合成用于药物应用。各种修饰对N-糖苷键的稳定性的影响也很重要,因为这些知识将对这些修改的生物原因提供了理解。在该研究中,作为使用引导离子束串联质谱技术的动能的函数研究质子化DNA和RNA核苷的碰撞诱导的解离(CID)行为。还进行了理论的电子结构计算以支持和增强实验研究。四种常见的DNA核苷酸(2'-脱氧腺苷(DADO),2'-脱氧胞苷(DCYD),2'-脱氧核苷酸(DGUO),胸苷(THD)和2'-脱氧尿苷)和四种常见的RNA核苷(腺苷(ADO ),胞苷(Cyd),鸟苷(Guo)和尿苷(URD)包含在该工作中,以研究核杂物酶同一性对其质子化形式的结构和稳定性的影响。此外,我们还包括两种次要的核苷,2'-脱氧尿苷和5-甲基瓜氨酸,以确定5-甲基化对尿苷/胸苷核苷的稳定性的影响,以便理解为什么自然使用不同形式的这种核碱基对于DNA和RNA核酸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号