首页> 外文期刊>Physical chemistry chemical physics: PCCP >Mechanisms and energetics for N-glycosidic bond cleavage of protonated adenine nucleosides: N3 protonation induces base rotation and enhances N-glycosidic bond stability
【24h】

Mechanisms and energetics for N-glycosidic bond cleavage of protonated adenine nucleosides: N3 protonation induces base rotation and enhances N-glycosidic bond stability

机译:质子化腺嘌呤核苷N-糖苷键裂解的机制和能量学:N3质子化诱导碱基旋转并增强N-糖苷键稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Our previous gas-phase infrared multiple photon dissociation action spectroscopy study of protonated 2'-deoxyadenosine and adenosine, [dAdo+H](+) and [Ado+H](+), found that both N3 and N1 protonated conformers are populated with the N3 protonated ground-state conformers predominant in the experiments. Therefore, N-glycosidic bond dissociation mechanisms of N3 and N1 protonated [dAdo+H](+) and [Ado+H](+) and the associated quantitative thermochemical values are investigated here using both experimental and theoretical approaches. Threshold collision-induced dissociation (TCID) of [dAdo+H](+) and [Ado+H](+) with Xe is studied using guided ion beam tandem mass spectrometry techniques. For both systems, N-glycosidic bond cleavage reactions are observed as the major dissociation pathways resulting in production of protonated adenine or elimination of neutral adenine. Electronic structure calculations are performed at the B3LYP/6-311+G(d,p) level of theory to probe the potential energy surfaces (PESs) for N-glycosidic bond cleavage of [dAdo+H](+) and [Ado+H](+). Relative energetics of the reactants, transition states, intermediates and products along the PESs for N-glycosidic bond cleavage are determined at the B3LYP/6-311+G(2d,2p), B3LYP-GD3BJ/6-311+G(2d,2p), and MP2(full)/6-311+G(2d,2p) levels of theory. The predicted N-glycosidic bond dissociation mechanisms for the N3 and N1 protonated species differ. Base rotation of the adenine residue enables formation of a strong N3H(+)center dot center dot center dot O5' hydrogen-bonding interaction that stabilizes the N3 protonated species and its glycosidic bond. Comparison between experiment and theory indicates that the N3 protonated species determine the threshold energies, as excellent agreement between the measured and B3LYP computed activation energies (AEs) and reaction enthalpies (Delta H(rxn)s) for N-glycosidic bond cleavage of the N3 protonated species is found.
机译:我们先前对质子化的2'-脱氧腺苷和腺苷[dAdo + H](+)和[Ado + H](+)进行的气相红外多光子解离光谱研究发现,N3和N1质子化构象体均由N3质子化的基态构象在实验中占主导地位。因此,使用实验和理论方法研究了质子化的[dAdo + H](+)和[Ado + H](+)的N3和N1的N-糖苷键解离机理以及相关的定量热化学值。利用引导离子束串联质谱技术研究了[dAdo + H](+)和[Ado + H](+)与Xe的阈值碰撞诱导解离(TCID)。对于两个系统,N-糖苷键裂解反应被观察为主要的离解途径,导致质子化腺嘌呤的产生或中性腺嘌呤的消除。在B3LYP / 6-311 + G(d,p)的理论水平上进行电子结构计算,以探测[dAdo + H](+)和[Ado +]的N-糖苷键裂解的势能面(PESs)。 H](+)。在B3LYP / 6-311 + G(2d,2p),B3LYP-GD3BJ / 6-311 + G(2d)处确定沿PES的反应物,过渡态,中间体和产物沿N-糖苷键裂解的相对能2p)和MP2(full)/ 6-311 + G(2d,2p)的理论水平。 N3和N1质子化物种的预测N-糖苷键解离机理不同。腺嘌呤残基的碱基旋转能够形成强大的N3H(+)中心点中心点中心点中心点O5'氢键相互作用,从而稳定N3质子化物质及其糖苷键。实验和理论之间的比较表明,N3质子化物种决定了阈值能量,因为对于N3的N-糖苷键裂解,实测和B3LYP计算的活化能(AEs)和反应焓(Delta H(rxn)s)之间的一致性极好发现质子化的物种。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号