首页> 外文会议>Canadian Conference on Computer and Robot Vision >Collaborative Multi-Camera Surveillance with Automated Person Detection
【24h】

Collaborative Multi-Camera Surveillance with Automated Person Detection

机译:自动化人检测协同多摄像机监控

获取原文

摘要

This paper presents the groundwork for a distributed network of collaborating, intelligent surveillance cameras, implemented with low-cost embedded microprocessor camera modules. Each camera trains a person detection classifier using the Winnow algorithm for unsupervised, online learning. Training examples are automatically extracted and labelled, and the classifier is then used to locate person instances. To improve detection performance, multiple cameras with overlapping fields of view collaborate to confirm results. We present a novel, unsupervised calibration technique that allows each camera module to represent its spatial relationship with the rest. During runtime, cameras apply the learned spatial correlations to confirm each other's detections. This technique implicitly handles non-overlapping regions that cannot be confirmed. Its computational efficiency is well-suited to real-time processing on our hardware.
机译:本文介绍了采用低成本嵌入式微处理器摄像机模块的分布式智能监控摄像头的分布式网络的基础。每个摄像机使用Winnow算法为无监督,在线学习训练一个人检测分类器。训练示例被自动提取和标记,然后使用分类器来定位人类实例。为了提高检测性能,具有重叠视图领域的多个摄像机协作以确认结果。我们提出了一种新颖的无监督校准技术,允许每个相机模块与其余部分表示其空间关系。在运行时,摄像机应用学习的空间相关性以确认彼此的检测。该技术隐含地处理无法确认的非重叠区域。其计算效率非常适合于我们的硬件实时处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号