首页> 外文期刊>Image and Vision Computing >Fully-automated person re-identification in multi-camera surveillance system with a robust kernel descriptor and effective shadow removal method
【24h】

Fully-automated person re-identification in multi-camera surveillance system with a robust kernel descriptor and effective shadow removal method

机译:具有健壮的内核描述符和有效的阴影去除方法的多摄像机监控系统中的全自动人员重新识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a fully-automated person Re-ID (Re-identification) system is proposed for real scenarios of human tracking in non-overlapping camera network. The system includes two phases of human detection and Re-ID. The human ROIs (Regions of Interest) are extracted from human detection phase and then feature extraction is done on these ROIs in order to build human descriptor for Re-ID. Unlike other approaches which deal with manually-cropped human ROls for person Re-ID, in this system, the person identity is determined based on the human ROIs extracted automatically by a combined method of human detection. Two main contributions are proposed on both phases of human detection and Re-ID in order to enhance the performance of person Re-ID system. First, an effective shadow removal method based on score fusion of density matching is proposed to get better human detection results. Second, a robust KDES (Kernel DEScriptor) is extracted from human ROI for person classification. Additionally, a new person Re-ID dataset is built in real surveillance scenarios from multiple cameras. The experiments on benchmark datasets and our own dataset show that the person Re-ID results using the proposed solutions outperform some of the state-of-the-art methods. (C) 2016 Elsevier B.V. All rights reserved.
机译:本文针对非重叠摄像机网络中真实的人类跟踪场景,提出了一种全自动的人Re-ID(Re-identification)系统。该系统包括人类检测和Re-ID的两个阶段。从人类检测阶段提取人类ROI(感兴趣区域),然后对这些ROI进行特征提取,以构建Re-ID的人类描述符。不同于其他处理人为Re-ID的人工裁剪的人类角色的方法,在此系统中,基于通过人类探测的组合方法自动提取的人类ROI确定人的身份。在人体检测和Re-ID的两个阶段都提出了两个主要的贡献,以提高人Re-ID系统的性能。首先,提出了一种基于密度匹配的分数融合的有效阴影去除方法,以获得更好的人体检测结果。其次,从人的ROI中提取了健壮的KDES(内核DEScriptor)以进行人的分类。此外,在真实的监视场景中,从多个摄像机构建了新的人Re-ID数据集。在基准数据集和我们自己的数据集上进行的实验表明,使用提出的解决方案的人员Re-ID结果优于某些最新方法。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Image and Vision Computing》 |2017年第3期|44-62|共19页
  • 作者单位

    Hanoi Univ Sci & Technol, Int Res Inst MICA, HUST CNRS UMI 2954 GRENOBLE INP, Hanoi, Vietnam;

    Hanoi Univ Sci & Technol, Int Res Inst MICA, HUST CNRS UMI 2954 GRENOBLE INP, Hanoi, Vietnam|Acad People Secur, Hanoi, Vietnam;

    Hanoi Univ Sci & Technol, Int Res Inst MICA, HUST CNRS UMI 2954 GRENOBLE INP, Hanoi, Vietnam;

    Hanoi Univ Sci & Technol, Int Res Inst MICA, HUST CNRS UMI 2954 GRENOBLE INP, Hanoi, Vietnam;

    Thai Nguyen Univ, Univ Informat & Commun Technol, Thai Nguyen, Vietnam;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Person Re-ID; Non-overlapping cameras; Kernel descriptor; Shadow removal; Score fusion scheme;

    机译:人Re-ID;不重叠的摄像机;内核描述符;阴影去除;分数融合方案;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号