首页> 外文会议>International Astronautical Congress >ROBUST CONTROL AND DOUBLE FLEXIBLE VIBRATION ACTIVE SUPPRESSION OF SPACE ROBOT WITH FLEXIBLE-LINK AND FLEXIBLE-JOINT THAT USED IN SPACE STATION
【24h】

ROBUST CONTROL AND DOUBLE FLEXIBLE VIBRATION ACTIVE SUPPRESSION OF SPACE ROBOT WITH FLEXIBLE-LINK AND FLEXIBLE-JOINT THAT USED IN SPACE STATION

机译:空间机器人的鲁棒控制和双柔性振动主动抑制空间机器人,柔性连杆和空间站中使用的柔性关节

获取原文

摘要

The flexibility of space robot system is mainly embodied in links of space robot and their connected hinge joints. For the reason of complexity of space robot system structure, researchers usually pay less attention on the system which both has flexible joint and link. So it's discussed in this paper for dynamics simulations, algorithm design of motion control, and active suppression problem of joint and link double flexible vibration for space robot system with flexible-joint and flexible-link under the situation of parameter uncertain. With the conservation relationship of linear and angular momentum, a system dynamics model is established by Lagrange equations, linear torsion spring and hypothesis modal method. To solve the problem that the application of traditional singular perturbation approach is limited by joint flexibility, a joint flexibility compensation controller is introduced, which can properly enhance the equivalent stiffness of joints. Then, based on singular perturbation theory, the whole system is resolved into flexible arm subsystem and motor moment power subsystem on the basis of joint flexible compensation controller and singular perturbation technology. An robust control scheme is proposed for flexible arm subsystem, since tracking virtual desired trajectory, so rigid trajectory track is guaranteed just by inputting one control, and at the same time, active suppression on flexible vibration is made. And for motor moment power subsystem, a moment differential feedback controller is designed to inhibit system elastic vibration that caused by joint flexibility. Computer numerical simulation comparison experiment testifies the reliability and availability of this scheme.
机译:空间机器人系统的灵活性主要体现在空间机器人及其连接的铰链接头的环节中。出于空间机器人系统结构复杂性,研究人员通常会在系统上不那么注意,这两者都具有灵活的关节和链接。因此,本文讨论了动力学仿真,运动控制算法设计,以及在参数不确定情况下,具有柔性关节和柔性连杆的空间机器人系统的关节和连接双重振动的主动抑制问题。随着线性和角动量的保护关系,通过拉格朗日方程,线性扭转弹簧和假设模态方法建立了一个系统动力学模型。为了解决传统奇异扰动方法的应用受关节灵活性的限制,引入了一个关节柔韧性补偿控制器,其可以适当地提高关节的等效刚度。然后,基于奇异扰动理论,基于联合柔性补偿控制器和奇异扰动技术,将整个系统解析为柔性臂子系统和电动机矩功率子系统。为柔性臂子系统提出了一种坚固的控制方案,因为跟踪虚拟所需的轨迹,因此仅通过输入一个控制来保证刚性轨道轨道,并且同时进行主动抑制柔性振动。对于电动机矩功率子系统,模差反馈控制器旨在抑制由关节柔韧性引起的系统弹性振动。计算机数值模拟比较实验证明了该方案的可靠性和可用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号