首页> 外文会议>International Astronautical Congress >Methods and outcomes of the COMRADE project - Design of robust Combined control for robotic spacecraft and manipulator in servicing missions: comparison between between Hinf and nonlinear Lyapunov-based approaches
【24h】

Methods and outcomes of the COMRADE project - Design of robust Combined control for robotic spacecraft and manipulator in servicing missions: comparison between between Hinf and nonlinear Lyapunov-based approaches

机译:COMRADE项目的方法和结果 - 在服务任务中机器人航天器和机械手的强大联合控制设计:基于HINF与非线性Lyapunov的方法的比较

获取原文

摘要

Extending life or repairing damaged on-orbit assets is not only a very attractive economic option for satellite operators as it could potentially increase margins for commercial services or increasing delivered value of scientific missions, but it would also help reducing the number of debris objects in space. These types of servicing missions pose technical challenges never faced until now. Of utmost relevance is the autonomous control of several movable devices, whose dynamics are inter-coupled (e.g., spacecraft platform, robotic manipulator, and end-effector), needed to safely and effectively achieve the mission objective. In the frame of ESA-supported COMRADE study, fully combined control (single control system controlling simultaneously all movable devices) is proposed due to its higher improvement potential (propellant saving, performances increase, safety) w.r.t. tele-operation, decoupled and/or collaborative control (the last one characterized by the use of two different control systems for the spacecraft platform and robotic manipulator respectively but, differently to the decoupled version, with information/feedback about what the other control system intends to do). Two independent combined control designs are developed in COMRADE (H_∞ and nonlinear Lyapunov-based), and tested. Each of them is applied for both Active Debris Removal (ADR) and servicing/re-fuelling mission scenarios. This paper presents: the processes of scenario analysis and derivation of COMRADE system requirements; a description of the design and setup for a Simulator, which included at its core the selection, prototyping and integration of algorithms for Guidance, Navigation and Control (GNC), Modes Management (AMM) and Failures Detection, Isolation and Recovery (FDIR) (all three together compose the COMRADE system) and the outcomes of the simulation phase of the Verification & Validation process.
机译:延伸或修理损坏的轨道资产不仅是卫星运营商的非常有吸引力的经济选择,因为它可能会增加商业服务的利润率或增加科学任务的交付价值,但它也有助于减少太空中的碎屑物体数量。这些类型的服务任务在现在之前造成技术挑战从未面临。最有关的是几种可移动设备的自主控制,其动力学是耦合的(例如,航天器平台,机器人操纵器和末端效应器),需要安全有效地实现任务目标。在ESA支持的同志研究的框架中,由于其提高潜力(推进剂节省,性能增加,安全),完全组合控制(同时控制所有可移动设备的单个控制系统控制)。远程操作,解耦和/或协作控制(最后一个特征在于分别使用两种不同的控制系统,分别使用两个不同的控制系统,但是,不同于解耦版本,信息/反馈关于其他控制系统打算的信息/反馈去做)。两个独立的组合控制设计是在同志(H_∞和非线性Lyapunov的)开发和测试。它们中的每一个都适用于有源碎片去除(ADR)和维修/重新加油的使命方案。本文呈现:同志系统要求的情景分析和推导过程;对模拟器的设计和设置的描述,包括在其核心的指导,导航和控制(GNC),模式管理(AMM)和故障检测,隔离和恢复(FDIR)中的选择,原型化和集成所有三个一起组成同志系统)和验证和验证过程的模拟阶段的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号