首页> 外文会议>International Astronautical Congress >ANALYSIS OF LARGE FLEXIBLE SPACECRAFT ELASTIC VIBRATION MODEL AND IMPACT ON ATTITUDE CONTROL SYSTEM
【24h】

ANALYSIS OF LARGE FLEXIBLE SPACECRAFT ELASTIC VIBRATION MODEL AND IMPACT ON ATTITUDE CONTROL SYSTEM

机译:大型柔性航天器弹性振动模型分析及对姿态控制系统的影响

获取原文

摘要

Renewed scientific interests in the orbital maneuver of large flexible spacecraft keep growing over the last decade. The large flexible tandem spacecraft is often assembled by single spacecraft through the mission of rendezvous and docking process to form a complex multi-body system. It could generate coupling phenomena with low natural frequencies during the process of orbital maneuver. The dynamics and control of such systems is a challenging task, this is mainly because the dynamic equations are highly nonlinear, especially for the elastic vibration model. The purpose of this study primarily focuses on the analysis of large flexible tandem spacecraft elastic vibration modelling and its impact on the spacecraft attitude control system. Firstly, based on the features of large tandem spacecraft model, we derive elastic vibration equation using finite element method(FEM), and the comparison with other equations is made using the traditional one-dimensional vibrating beam modelling method. Traditional method contains three elastic vibration equations, corresponding to three generalized coordinates qΦ, qψ, qγ,separately describe longitudinal bending vibration, yaw bending vibration and axial torsion vibration. These three vibrations distinguish three kinds in the equation, ignoring the coupling between them. The new elastic vibration model using finite element method(FEM) only has one equation, corresponding to one generalized coordinate qi,which could accurately reflect vertical, horizontal, torsion coupled motion characteristics as well as completely describe the arbitrarily complex elastic vibration of the spacecraft. Secondly, Inverse Nyquist Array(INA) method is exhibited according to the multi-input and multi-output system(MIMO). This is mainly due to that the spacecraft vertical, horizontal and torsion motion are fully coupled and coupling matrix is diagonally dominant, which traditional controller design method is no longer applicable. The attitude control system caused by elastic vibration coupling degree between the three-motion is analysed based on the diagonal dominance, then the INA method is used for attitude control system design. Simulation is in the case of large flexible tandem spacecraft,elastic modal is 28 when controller design and time-domain simulation considered.1-9 modes is bend direction of spacecraft in 45 degree of coordinate plane; 10-18 modes is in 135 degree;19-23 is longitudinal vibration modes of spacecraft;and 24-28 modes is torsional modes.Modal damping ratio is taken as 0.005. Time domain simulation with variable coefficients has been carried out 2-160s.Results show that maximum deviation of pitch angle, yaw angle, roll angle is 2.0 degree,1.5 degree,2.2 degree respectively, which verifies the effectiveness of the controller design through the variable coefficient of time domain.
机译:在大型柔性航天器的轨道机动中重新进行科学兴趣,在过去十年中继续增长。大型灵活的串联航天器通常通过单次航天器组装,通过对接过程的任务来形成复杂的多体系。它可以在轨道机动过程中产生具有低自然频率的耦合现象。这种系统的动态和控制是一个具有挑战性的任务,这主要是因为动态方程是高度非线性的,特别是对于弹性振动模型。本研究的目的主要侧重于对大型灵活串联航天器弹性振动建模的分析及其对航天器姿态控制系统的影响。首先,基于大串联航天器模型的特征,我们使用有限元方法(FEM)来源的弹性振动方程,并使用传统的一维振动光束建模方法进行与其他方程的比较。传统方法包含三个弹性振动方程,对应于三个广义坐标Qφ,Qψ,Qγ,分别描述纵向弯曲振动,偏航弯曲振动和轴向扭转振动。这三个振动在等式中区分了三种,忽略它们之间的耦合。使用有限元方法(FEM)的新的弹性振动模型仅具有一个等式,对应于一个广义坐标qi,其可以精确地反射垂直,水平,扭转耦合运动特性以及完全描述航天器的任意复杂的弹性振动。其次,根据多输入和多输出系统(MIMO)展示了逆奈奎斯特阵列(INA)方法。这主要是由于航天器垂直,水平和扭转运动完全耦合,耦合矩阵是对角的主导,传统的控制器设计方法不再适用。基于对角线优势分析三次运动之间的弹性振动耦合度引起的姿态控制系统,然后ina方法用于姿态控制系统设计。仿真在大型灵活串联航天器的情况下,弹性模态是28当控制器设计和时域模拟所考虑的时域模拟时为45度的坐标平面弯曲方向; 10-18模式在135度; 19-23是航天器的纵向振动模式; 24-28模式是扭转模式。阳极阻尼比率为0.005。具有可变系数的时域模拟已经执行2-160s.Results显示俯仰角,偏航角,滚角的最大偏差分别为2.0度,1.5度,2.2度,这验证了通过变量的控制器设计的有效性时域系数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号