首页> 外文会议>International Modal Analysis Conference >HUBBLE SPACE TELESCOPE ON-ORBIT SYSTEM IDENTIFICATION
【24h】

HUBBLE SPACE TELESCOPE ON-ORBIT SYSTEM IDENTIFICATION

机译:哈勃太空望远镜在轨道系统识别

获取原文

摘要

The Hubble Space Telescope on-orbit experiences low frequency oscillations due to thermal excitation of the deployed solar arrays and possibly other appendages/equipment. Although these disturbances are small compared with standard spacecraft requirements, they cause higher than expected jitter levels for the HST. The modifications to the pointing control system initially utilized the frequencies and gain factors predicted by math models. Under normal practice, for system identification on the ground, the vehicle (or a very precise structural dynamic simulator) testing occurs in a deployed configuration using a wide range of well-understood methods for force input, data processing and post-test model correlation methods. Such a test was indeed performed for the HST, but did not include some appendages, such as the deployed Solar Arrays, due to gravitational effects. This uncertainty in the plant model at low frequencies affects the stability and performance of the control law if the control bandwidth increases. The HST On-orbit Transfer Function Test was intended to provide more accurate modal parameters for the low frequency modes used in the control law update. In addition, since a source of the on-orbit disturbance was a possibly stuck mechanism, and knowing that the modal frequencies were changing based on Solar Array pre-load and thermal load effects, testing afforded a method to periodically check the state of the vehicle on-orbit. The objective of the HST On-orbit Transfer Function Test was to measure the transfer function from the reaction wheels (torque input) to the rate gyros (angular rate sensor) and thereby characterize the modal parameters of the low frequency appendage modes of the HST which are important for control system design. A specially designed torque input pulse is applied to the vehicle via the reaction wheels and the response measured. The vehicle response and the torque input are processed using parameter estimation techniques to compute the transfer function and quantify the modal parameters. Development of forcing function type and amplitude are discussed and results compared with pre-test analyses and on-orbit data. Uncertainty bounds for the parameters are studied since the parameters vary based on orbit location, vehicle geometry induced non-linearities, control law coupling, gyro noise and measurement errors. The results are compared with pre-test analyses, math model simulations with the modal parameters and actual vehicle response data. The report concludes with recommendations for dynamic tests to characterize spacecraft on-orbit. The test was done under the guidance of the NASA as part of the HST project.
机译:由于部署的太阳阵列的热激励和可能的其他附加设备/设备,哈勃太空望远镜在轨道上的轨道上的轨道振荡经历了低频振荡。虽然这些干扰与标准航天器要求相比较小,但它们对HST的预期抖动水平较小。对指向控制系统的修改最初利用了数学模型预测的频率和增益因子。在正常做法,对于地面上的系统识别,车辆(或非常精确的结构动态模拟器)测试在部署的配置中使用广泛的良好理解的力输入,数据处理和测试后模型相关方法进行部署的配置。 。这种测试确实对HST进行了执行,但由于引力效应,不包括一些附属物,例如部署的太阳阵列。如果控制带宽增加,则低频植物模型中的这种不确定性会影响控制法的稳定性和性能。 HST On-Orbit传递函数测试旨在为控制法更新中使用的低频模式提供更准确的模态参数。另外,由于轨道干扰的来源是可能卡住的机制,并且知道模态频率基于太阳能阵列预载和热负荷效应而变化,因此测试提供了一种定期检查车辆状态的方法在轨道上。 HST在轨道传递函数测试的目的是测量从反应轮(扭矩输入)到速率陀螺仪(角速率传感器)的传递函数,从而表征HST的低频附录模式的模态参数对控制系统设计很重要。通过反应轮和测量的响应将特定设计的扭矩输入脉冲施加到车辆上。使用参数估计技术处理车辆响应和扭矩输入以计算传递函数并量化模态参数。讨论了迫使功能类型和幅度的开发,与预测分析和轨道数据相比,结果。研究了参数的不确定性范围,因为参数因基于轨道位置而变化,车辆几何诱导的非线性,控制定律耦合,陀螺噪声和测量误差。将结果与预测试分析进行比较,使用模态参数和实际车辆响应数据进行数学模型模拟。该报告结束了动态测试的建议,以表征轨道上的航天器。该试验是在美国国家航空航天局的指导下完成的,作为HST项目的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号