首页> 外文会议>International Modal Analysis Conference >USE OF MODE ORTHOGONALIZATION AND MODAL DAMPING IN FLEXIBLE MULTIBODY DYNAMICS
【24h】

USE OF MODE ORTHOGONALIZATION AND MODAL DAMPING IN FLEXIBLE MULTIBODY DYNAMICS

机译:使用模式正交化和柔性多体动力学模态阻尼

获取原文

摘要

In flexible multibody dynamics nonlinear equations of motion are considered. Nonlinearities are present due to large overall motions of reference frames associated with each flexible body assembled from finite elements and also due to nonlinear springs, dampers, control systems, etc. For linearly elastic bodies a modal superposition (with few modes) for the finite element degrees-of-freedom (often a large number) is often of advantage in order to minimize computer efforts while keeping the analysis results sufficiently accurate. In fact, in some problems where long time simulations of large complex systems (trucks, space platforms, etc.) are of interest the modal truncation may be the only possible way to achieve any results at all in today's computer environments. Modes and finite element data may be extracted from finite element programs and then be used in a nonlinear time integration using a general purpose dynamics simulation program. Although the aim of the work presented here was to develop procedures for such a dynamics program, the statements below have applications also for linear systems. One objective is to show advantages of using an orthogonalization procedure, i. e. how a combination of modes, for example so-called constraint modes and fixed-interface eigenmodes, can be linearly combined into a new set of modes that are orthogonal with respect to the mass and stiffness matrices of a finite element assembly. Another objective is to point out that so-called attachment modes may be linearly combined into constraint modes and as a consequence produce the same orthogonalized modes and eigenvalues. One advantage of orthogonalization is that the resulting diagonal modal mass and stiffness matrix entries will indicate how small time steps one will expect during simulations. Another advantage, of special importance in flexible multibody dynamics, is that one may detect (and reject) possible rigid body modes contained in a set of constraint modes. Furthermore, modes corresponding to high frequencies may be detected and considered to be of no interest for the response. The orthogonalization procedure makes it possible to introduce, for each orthogonalized mode, a modal damping parameter that will reflect the internal damping properties of the finite element body. No assumption of proportional damping for the complete mechanical system is made since discrete nonlinear dampers, etc. also are allowed to exist in the dynamic analysis and design system model.
机译:在灵活的多体动力学中,考虑了运动的非线性方程。由于与从有限元组装的每个柔性体相关联的参考框架的总体运动而存在非线性,并且由于非线性弹簧,阻尼器,控制系统等,用于线性弹性体的模态叠加(具有很少的模式),用于有限元件自由度(通常是大量的)通常是有利的,以便最大限度地减少计算机努力,同时保持分析结果足够准确。事实上,在一些问题中,长时间模拟大型复杂系统(卡车,空间平台等)的兴趣,模态截断可能是在当今计算机环境中实现任何结果的唯一方法。可以从有限元节目中提取模式和有限元数据,然后使用通用动力学模拟程序在非线性时间集成中。虽然这里所呈现的工作的目的是为这种动态计划制定程序,但下面的陈述也具有用于线性系统的应用。一个目标是表现出使用正交化程序的优点,即e。如何组合模式(例如所谓的约束模式和固定接口EigenModes)可以线性地组合成关于关于有限元件组件的质量和刚度矩阵正交的新型模式。另一个目的是指出所谓的附件模式可以线性地组合成约束模式,结果产生相同的正交化模式和特征值。正交化的一个优点是产生的对角线模态质量和刚度矩阵条目将指示在模拟期间预期的时间步骤的时间。另一个优点是在灵活的多体动力学中特别重要,是可以检测(并拒绝)包含在一组约束模式中的可能的刚体模式。此外,可以检测对应于高频的模式,并且认为对响应没有兴趣。正交化程序使得可以针对每个正交化模式引入模态阻尼参数,该模态阻尼参数将反映有限元体的内部阻尼性能。由于在动态分析和设计系统模型中,也不允许为完全机械系统进行完整机械系统的比例阻尼的假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号