首页> 外文会议>Electronic Components Technology Conference >Comparison of Electrical and Optical Interconnect
【24h】

Comparison of Electrical and Optical Interconnect

机译:电气和光学互连的比较

获取原文

摘要

In this paper, we present a comparison between electrical and optical interconnect for chip-to-chip signaling in terms of data rate and system power consumption on FR4 circuit boards. The results show that optical interconnection is the only functional technology for a single serial line of 20cm length at a lOGbps data rate. Low power CMOS logic driving parallel unterminated copper interconnect on FR4 substrates should be replaced by terminated transmission lines at 10cm lengths for 10Gbps aggregate throughput and at 20cm for IGbps aggregate throughput. Terminated copper transmission line interconnect on FR4 substrates can achieve 10Gbps per line operation at 20cm, provided no vias are used in the interconnect, or via technology with low reflection loss is developed. With vias, terminated copper transmission line interconnect must be replaced at 20cm for lOGbps per line, however, 4 parallel terminated transmission lines with vias each running at 2.5Gbps can achieve lOGbps aggregate communication over a 20cm length. Thus, serial optics should only be used to replace 4 parallel electrical transmission lines if the power dissipation of the optical driver circuitry is less than 4 times the 2.5Gbps electrical driver power consumption. For electrical interconnect, two interconnection technologies were studied. The first technology uses ideal sources to drive a single serial terminated 50Ω copper transmission line on FR4 both with and without vias. The second technology uses conventioinal CMOS digital interface circuits and parallel unterminated, 50Ωtransmission line interconnect of width 16, 32, and 64bits made from copper on an FR4 substrate. These two technologies represent low power CMOS and the ultimate limit of FR4 copper traces for unequalized digital signaling. For optical interconnect, commercial SiGe optoelectronic laser driver circuit technology and published optical waveguide data were used to determine performance limits. Compliance with the IEEE 802.3ae XAUI interface eye mask was used to determine acceptable data transmission in all cases.
机译:在本文中,我们在FR4电路板上的数据速率和系统功耗方面对芯片到芯片信号传导的电气和光学互连之间的比较。结果表明,光学互连是仅以LOGBPS数据速率为20cm长度的单个串行线的唯一功能技术。在FR4基板上的低功率CMOS逻辑驱动并联铜互连应通过10cm长度的终止传输线代替10Gbps聚合吞吐量,并且在20cm处为IGBPS聚合吞吐量。在FR4基板上的终止铜传输线互连可以在20cm处实现10gbps,不提供在互连中没有使用通孔,或者开发了通过具有低反射损耗的技术。利用通孔,必须在20cm处替换终止的铜传输线互连,但每条LOGbps,然而,每个运行在2.5Gbps的通孔的4个并联终端传输线可以通过20cm长度实现LOGBPS聚合通信。因此,如果光学驱动器电路的功耗小于2.5Gbps电驱动器功耗的4倍,则串行光学器件应仅用于更换4个平行电传输线。对于电互连,研究了两个互连技术。第一种技术使用理想源来驱动FR4的单个串行终止50Ω铜传输线,无论是否有通孔。第二种技术采用甲膜调速CMOS数字接口电路和平行的未接收器,50Ω转换线互连的宽度16,32和64位,在FR4基板上由铜制成。这两种技术代表低功率CMOS和FR4铜迹线的最终极限,用于无与伦比的数字信令。对于光学互连,使用商业SiGe光电激光驱动电路技术和公开的光波导数据来确定性能限制。符合IEEE 802.3ae XAUI接口眼罩用于确定所有情况下可接受的数据传输。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号