首页> 外文会议>European Conference on Speech Communication and Technology >A SWITCHING LINEAR GAUSSIAN HIDDEN MARKOV MODEL AND ITS APPLICATION TO NONSTATIONARY NOISE COMPENSATION FOR ROBUST SPEECH RECOGNITION
【24h】

A SWITCHING LINEAR GAUSSIAN HIDDEN MARKOV MODEL AND ITS APPLICATION TO NONSTATIONARY NOISE COMPENSATION FOR ROBUST SPEECH RECOGNITION

机译:一种切换线性高斯隐马尔可夫模型及其在鲁棒语音识别中的非间断噪声补偿应用

获取原文

摘要

The Switching Linear Gaussian (SLG) Models was proposed recently for time series data with nonlinear dynamics. In this paper, we present a new modelling approach, called SLGHMM, that uses a hybrid Dynamic Bayesian Network of SLG models and Continuous Density HMMs (CDHMMs) to compensate for the nonsta-tionary distortion that may exist in speech utterance to be recognized. With this representation, the CDHMMs (each modelling mainly the linguistic information of a speech unit) and a set of linear Gaussian models (each modelling a kind of stationary distortion) can be jointly learnt from multi-condition training data. Such a SLGHMM is able to model approximately the distribution of speech corrupted by switching-condition distortions. The effectiveness of the proposed approach is confirmed in noisy speech recognition experiments on Aurora2 task.
机译:最近提出了开关线性高斯(SLG)模型,用于具有非线性动力学的时间序列数据。在本文中,我们提出了一种新的建模方法,称为SPGHMM,它使用SLG模型的混合动态贝叶斯网络和连续密度HMMS(CDHMMS)来补偿要识别语音话语中可能存在的非稳定性失真。利用该表示,可以共同学习来自多条件训练数据的CDHMMS(主要建模)和一组线性高斯模型(每个建模的静止失真)。这种SMGHMM能够模拟大致通过切换条件失真损坏的语音分布。在Aurora2任务的嘈杂语音识别实验中确认了拟议方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号