首页> 外文会议>European Conference on Speech Communication and Technology >Using Statistical Language Modelling to Identify New Vocabulary in a Grammar-Based Speech Recognition System
【24h】

Using Statistical Language Modelling to Identify New Vocabulary in a Grammar-Based Speech Recognition System

机译:使用统计语言建模来识别基于语法的语音识别系统中的新词汇

获取原文

摘要

Spoken language recognition meets with difficulties when an unknown word is encountered. In addition to the new word being unrecognisable, its presence impacts on recognition performance on the surrounding words. The possibility is explored here of using a back-off statistical recogniser to allow recognition of out-of-vocabulary words in a grammar-based speech recognition system. This study shows that a statistical language model created from a corpus obtained using a grammar-based system and augmented with minimally-constrained domain-appropriate material allows extraction of words that are out of the vocabulary of the grammar in an unseen corpus with fairly high precision.
机译:当遇到未知的单词时,口语识别会遇到困难。除了新的单词无法辨认,它的存在会影响周围单词上的识别性能。这里使用退出统计识别器探讨了可能性,以允许在基于语法的语音识别系统中识别词汇外单词。本研究表明,从使用基于语法的系统获得的语料库中创建的统计语言模型,并使用最小限制的域适当的材料来提取出于相当高的精度的看不见的语料库中的语法中的词汇。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号