首页> 外文会议>International Vaccum Microelectronics Conference >Field emission studies of boron and nitrogen doped carbon nanotubes grown on pointed and flat substrates
【24h】

Field emission studies of boron and nitrogen doped carbon nanotubes grown on pointed and flat substrates

机译:掺硼和扁平基材生长的硼和氮掺杂碳纳米管的场发射研究

获取原文

摘要

The idea of doping carbon nanotubes (CNTs) with boron (B) and/or nitrogen (N) looks attractive in view of the changes brought in their electronic structures by the dopants [1-3]. The field electron emission studies of boron (B) and nitrogen (N) doped CNTs grown in situ on pointed tungsten (W) tip and flat silicon (Si) substrate surfaces have been reported in this paper. The CNTs were grown by pyrolysis of ferrocene [4-5] with suitable dopants. The morphology of the B-doped and N-doped CNTs on flat Si substrate was observed under SEM (Fig 1a & b). The B-doped CNTs on flat Si and pointed W tip have rope like structure and are also found to be considerably long (~50 μm). This may be attributed to the dopant atoms of Boron, which act as catalysts for further growth of the CNTs along the tube axis. N-doped CNTs were, however, short (~ 5 μm), uniform and very densely packed. The Fowler-Nordheim (F-N) plots obtained from the I-V curves of doped field emitters show non-linear behavior (Fig 2 a and b). This non-linearity may be attributed to strong field penetration into the emitter apex region resulting into the local large variations of the electric field in the electron tunneling region [6-7]. The local field enhancement factor (β) and the current density (J) have been calculated from the slopes of the F-N plots. Field emission micrographs from the B- and N- doped CNTs on W tips reveal geometrical structures, typical of CNT bundles [5]. The FEM images corresponding to B and N-doped CNTs on flat Si substrates show streaky structures. Typical field emission currents upto 200 μA drawn from both B and N-doped CNTs are remarkably stable over periods greater than 3 hours (Fig 3 a and b). But in case of B-doped CNTs on flat Si, the set current of 400 μA decreases slowly for about an hour and then gets stabilised at 300 μA.
机译:掺杂碳纳米管(CNT)与硼(B)和/或氮气(n)的想法看起来具有吸引力地通过掺杂剂[1-3]所带来的电子结构的变化。本文报道了硼(B)和氮(N)掺杂的掺杂CNT的掺杂CNT在尖尖钨(W)尖端和扁平硅(Si)衬底表面上的现场电子发射研究。用合适的掺杂剂热解[4-5]的溶解CNT。在SEM下观察到扁平Si衬底上的B掺杂和N掺杂CNT的形态(图1A&B)。扁平Si上的B掺杂的CNT和尖头W尖端具有绳索,如结构,也发现相当长(〜50μm)。这可能归因于硼的掺杂剂原子,其充当催化剂,用于沿管轴进一步生长CNT。然而,N-掺杂的CNT是短(〜5μm),均匀并且非常密集的填充。从掺杂场发射器的I-V曲线获得的Fowler-Nordheim(F-N)图显示了非线性行为(图2a和b)。该非线性可能归因于在发射极顶点区域中的强场渗透,导致电子隧道区域中的电场的局部大变化[6-7]。已经从F-N图的斜率计算了局部场增强因子(β)和电流密度(j)。来自W提示的B型和N-掺杂CNT的场发射显微照片揭示了几何结构,典型的CNT束[5]。对应于B平Si基板上的B和N掺杂CNT的有限元图像显示条纹结构。从B和N掺杂的CNT汲取的典型场发射电流高达200μA,在大于3小时的周期上显着稳定(图3a和b)。但是,在平Si上的B掺杂CNT的情况下,400μA的设定电流缓慢降低约一小时,然后在300μA稳定下来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号