首页> 外文会议>応用物理学会学術講演会;応用物理学会 >Solving integer Factorization with Stochastic Magnetic Tunnel Junctions and a Quantum Adiabatic Algorithm
【24h】

Solving integer Factorization with Stochastic Magnetic Tunnel Junctions and a Quantum Adiabatic Algorithm

机译:用随机磁隧道结和量子绝热算法求解整数分解

获取原文

摘要

Optimization problems are a class of computationally complex problems that conventional computers struggle to solve. This struggle stems from the fact that optimization problems search for the most efficient solution out of a multitude of possible answers. Quantum computing shows potential for solving these problems, but is currently limited by technological barriers including decoherence, the number of implementable many-body interactions, and a current requirement of cryogenic temperatures for operation.In this work, we demonstrate the use of a probabilistic computer to solve integer factorization, which can be cast as an optimization problem . We develop an algorithm initially from the field of adiabatic quantum computing, but instead connect bits electrically, which allow us to circumvent some of the above challenges quantum computing faces. We implement these bits as probabilistic bits, or p-bits, which are composed of stochastic magnetic tunnel junctions (s-MTJs) fluctuating in time between 0 and 1 at room temperature. We first describe the characterization of s-MTJs where we modify a typical magneto-resistive random-access memory (MRAM) stack structure. We then connect the s-MTJ with CMOS circuit components to create a p-bit where the probability for the output to be either 0 or 1 is controlled by the input. By connecting eight p-bits we then demonstrate integer factorization up to 945. These result show that probabilistic computing with p-bits can provide a classical analog to quantum computing and offer a scalable hardware for solving optimization problems.
机译:优化问题是传统计算机难以解决的一类计算复杂问题。这场斗争源于优化问题搜索最有效的解决方案,从多个可能的答案中寻找最有效的解决方案。量子计算显示了解决这些问题的可能性,但目前受技术屏障的限制,包括变形,可实现的多体相互作用的数量,以及对操作的低温温度的目前要求。在这项工作中,我们展示了使用概率计算机来解决整数分解,这可以作为优化问题。我们最初从绝热量子计算领域开发了一种算法,而是电气连接位,这使我们能够绕过上述一些挑战量子计算面。我们将这些位作为概率钻头或P比特,它们由随机磁隧道结(S-MTJ)在室温下在0和1之间波动而构成。我们首先描述了S-MTJ的表征,在那里我们修改典型的磁电阻随机存取存储器(MRAM)堆叠结构。然后,我们将S-MTJ与CMOS电路组件连接,以创建一个p钻头,其中输出为0或1的概率由输入控制。通过连接八个p-bit,我们将展示最多945的整数分解。这些结果表明,具有p比特的概率计算可以提供经典的模拟计算,并提供可扩展硬件,用于解决优化问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号