首页> 外文会议>Applications of Artificial Intelligence IX >Studies in robust approaches to object detection in high-clutter background
【24h】

Studies in robust approaches to object detection in high-clutter background

机译:高杂波背景下强大的目标检测方法研究

获取原文
获取外文期刊封面目录资料

摘要

Abstract: Object detection approaches need to perform accuratelyand robustly over a wide range of scenes. It would bequite valuable if one can devise a performance indexfor an object detection approach as a function of thenature of a particular scene. Basically this requiresan ability to derive a quantitative measure for the'clutter' observed in an image. Most images of interestare texture-rich i.e. the important perceptualproperties are based upon the spatial arrangements ofsimple patterns which might be regular in nature. As aresult, it is natural to utilize texture analysis basedoperators to define the measure of image quality of'clutter' that is being sought. It has been proven thatthe gray level cooccurence (GLC) matrices of an imageembody important texture information, and the image canindeed be reconstructed from these matrices. Hence itis proposed that GLC-based measures be derived and usedto quantify image quality. Current approaches are basedon only one of several important perceptuallymeaningful measures which can be computed from GLCmatrices. Prior work done in this area is assessed inthis paper. The derivation of the image qualitymeasures from GLC matrices is currently beingresearched. This paper presents a discussion of theseissues along with the objectives and results of anongoing study involving object detection in highresolution aerial images.!
机译:摘要:目标检测方法需要在广泛的场景中准确且强大地执行。如果能够根据特定场景的性质来设计对象检测方法的性能指标,那将是非常有价值的。基本上,这需要具有对图像中观察到的“杂波”进行定量测量的能力。大多数感兴趣的图像都具有丰富的纹理,即重要的感知特性是基于简单图案的空间排列,这些图案在自然界中可能是规则的。结果,利用基于纹理分析的运算符来定义正在寻找的“杂波”的图像质量的度量是很自然的。已经证明,图像的灰度共生(GLC)矩阵包含重要的纹理信息,并且可以从这些矩阵重构图像。因此,我建议提出基于GLC的度量,并将其用于量化图像质量。当前的方法仅基于可以从GLC矩阵计算出的几种重要的感知上有意义的度量之一。本文评估了该领域以前所做的工作。目前正在研究从GLC矩阵推导图像质量度量的方法。本文介绍了这些问题,以及涉及高分辨率航空图像中目标检测的无意义研究的目标和结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号