首页> 外文会议>Electronic Components and Technology Conference, 2001. Proceedings., 51st >Studies on Ni-Sn intermetallic compound and P-rich Ni layer at theelectroless nickel UBM-solder interface and their effects on flip chipsolder joint reliability
【24h】

Studies on Ni-Sn intermetallic compound and P-rich Ni layer at theelectroless nickel UBM-solder interface and their effects on flip chipsolder joint reliability

机译:Ni-Sn金属间化合物和富磷Ni层的研究化学镍UBM-焊料界面及其对倒装芯片的影响焊点可靠性

获取原文

摘要

The electroless deposited Ni-P (Phosphorus) under bump metallurgy(UBM) layer was fabricated for Sn containing solder bumps. The amount ofP in the electroless Ni film was optimized by controlling complexingagents and the pH of plating solution. The interfacial reaction at theelectroless Ni UBM/solder interface was investigated in this work. Theintermetallic compound (IMC) formed at the interface during solderreflowing was mainly Ni3Sn4, and a P-rich Ni layerwas also formed as a by-product of Ni-Sn reaction between the NiSn IMCand the electroless Ni layer. A 1-4 μm ofNi3Sn4 IMC and a 1800-5000 Å of P-rich Nilayer were formed in less than 10 minutes of solder reflowing dependingon solder materials and reflow temperatures. However, less than 1 μmthickness of the electroless Ni layer was consumed. It was found thatthe P-rich Ni layer contains Ni, P and a small amount of Sn (~7 at%).The atomic ratio of 3Ni:1P indicates that there is Ni,P phase in theP-rich Ni layer which was verified by the X-ray analysis. No Sn wasdetected at the electroless Ni layer located just below the P-rich Nilayer. Therefore, the P-rich Ni layer, a by-product layer of Ni-Sninterfacial reaction, is not appropriate for a Sn diffusion barrier atthe electroless Ni UBM and Sn containing solders. Because of the fastdiffusion of Sn into the P-rich Ni layer, a series of Kirkendall voidswere found in the Ni3Sn4 IMC, just above theP-rich Ni layer during extended solder reflowing. The amount of theKirkendall voids appeared to be proportional to the growth of the P-richNi layer determined by solder reflowing and subsequent annealingprocesses. Because the Kirkendall voids are considered to be the maincause of the brittle fracture, it is recommended to restrict the growthof the P-rich Ni layer by choosing proper processing conditions. Thebrittle characteristics of the Ni-Sn IMC and the Kirkendall voids at theelectroless Ni UBM-Sn containing solder system cause brittle bumpfailure which results in a decreased bump adhesion strength
机译:凸点冶金法下化学沉积的Ni-P(磷) 制造(UBM)层用于含锡的焊料凸点。大量的 通过控制络合作用优化化学镀镍膜中的P 剂和电镀液的pH值。界面反应 在这项工作中,对化学Ni Ni UBM /焊料界面进行了研究。这 焊接过程中在界面处形成的金属间化合物(IMC) 回流主要是Ni 3 Sn 4 和富P的Ni层 也是NiSn IMC之间Ni-Sn反应的副产物 和化学镀镍层。 1-4μm的 Ni 3 Sn 4 IMC和1800-5000Å富P的Ni 不到10分钟的回流时间就形成了镀层 焊接材料和回流温度。但是,小于1μm 化学镀Ni层的厚度被消耗。发现 富P的Ni层包含Ni,P和少量的Sn(〜7 at%)。 3Ni:1P的原子比表明在该相中存在Ni,P相 X射线分析验证了富P的Ni层。没有锡 在富P Ni下方的化学Ni层检测到 层。因此,富P的Ni层是Ni-Sn的副产物 界面反应,不适用于锡扩散障碍 含Ni UBM和Sn的化学焊料。因为快 Sn扩散到富含P的Ni层中,形成一系列Kirkendall空隙 在Ni 3 Sn 4 IMC中被发现 延长焊料回流期间的富P镍层。金额 肯肯德尔孔隙似乎与富P的增长成正比 通过焊料回流和随后的退火确定镍层 流程。因为柯肯德尔空洞被认为是主要的 造成脆性断裂的原因,建议限制其生长 通过选择适当的加工条件来制备富含P的Ni层。这 Ni-Sn IMC的脆性特征和 含镍的UBM-Sn化学焊锡系统会导致脆性凸点 失效,导致凸点粘合强度降低

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号