首页> 外文会议>IEEE International Symposium on Circuits and Systems >Ultra-Compact, Entirely Graphene-Based Nonlinear Leaky Integrate-and-Fire Spiking Neuron
【24h】

Ultra-Compact, Entirely Graphene-Based Nonlinear Leaky Integrate-and-Fire Spiking Neuron

机译:超紧凑,完全基于石墨烯的非线性渗漏积分并激发火焰神经元

获取原文

摘要

Designing and implementing artificial neuromorphic systems, which can provide biocompatible interfacing, or the human brain akin ability to efficiently process information, is paramount to the understanding of the human brain complex functionality. Energy-efficient, low-area, and biocompatible artificial neurons are key ubiquitous components of any large scale neural systems. Previous CMOS-based neurons implementations suffer from scalability drawbacks and cannot naturally mimic the analog behavior. Memristor and phase-changed neurons have variability-induced instability drawbacks, and usually rely on additional CMOS circuitry. However, graphene, despite its ballistic transport, inherently analog nature, and biocompatibility, which provide natural support for biologically plausible neuron implementations has only been considered for Boolean logic implementations. In this paper, we propose an ultra-compact, all graphene-based nonlinear Leaky Integrate-and-Fire spiking neuron. By means of SPICE simulations, we validate its basic functionality and investigate the output spikes response under stochastic noisy input spike trains with a variable firing rate, from 20 to 200 spikes per second. Simulation results indicate neuron robustness to noisy scenarios, and neuronal output firing regularity. The small area and the low energy consumption, due to 200 mV supply voltage operation, can benefit the implementation of large scale neural networks, and the biologically plausible operating conditions (e.g., 2 ms and 100 mV spike duration and amplitude), can promote the interfacebility of graphene-based artificial neurons with biological counterparts.
机译:设计和实现人工神经形态系统,可以提供生物相容性接口,或类似于人脑的有效处理信息的能力,对于理解人脑复杂功能至关重要。节能,低面积且生物相容的人工神经元是任何大规模神经系统中普遍存在的关键组件。以前的基于CMOS的神经元实现方式具有可伸缩性方面的缺点,无法自然地模仿模拟行为。忆阻器和相变神经元具有可变性引起的不稳定性缺点,通常依赖于附加的CMOS电路。但是,尽管石墨烯具有弹道传输,固有的模拟性质和生物相容性,但它们仅为布尔逻辑实现考虑,而生物相容性为生物学上合理的神经元实现提供了自然支持。在本文中,我们提出了一种超紧凑的,全基于石墨烯的非线性泄漏积分和发射峰神经元。通过SPICE仿真,我们验证了其基本功能,并研究了随机噪声输入尖峰列在可变触发速率(每秒20至200个尖峰)下的输出尖峰响应。仿真结果表明神经元对嘈杂场景的鲁棒性,以及神经元输出激发规律。由于电源电压为200 mV,因此面积小且能耗低,可以有益于大规模神经网络的实施,并且生物学上合理的工作条件(例如2 ms和100 mV的尖峰持续时间和幅度)可以促进基于石墨烯的人工神经元与生物学对应物的界面性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号