首页> 外文会议>Conference on composites at Lake Louise >MULTI-COMPONENT COLLOIDAL NANOROD HETEROSTRUCTURES AND THEIR OPTOELECTRONIC/PHOTOVOLTAIC APPLICATIONS
【24h】

MULTI-COMPONENT COLLOIDAL NANOROD HETEROSTRUCTURES AND THEIR OPTOELECTRONIC/PHOTOVOLTAIC APPLICATIONS

机译:多组分胶体纳米异质结构及其光电子/光伏应用

获取原文

摘要

The ability to efficiently separate, recombine, and direct charge carriers is central to a wide range of applications, including electronics, photovoltaics, displays and solid-state lighting. Engineering band structure and heterointerfaces with atomic precision is an obvious route to achieving such capabilities. To do so through widely-accessible and cost-effective means is not. But such a means would allow rapid advances in these critical application areas. The evolution of colloidal semiconductor nanocrystals from single-composition, "spherical" particles to complex heterostructures of diverse shapes provides many opportunities for precision band structure engineering through scalable solution synthesis. With anisotropic shapes that can be exploited for assembly, charge carrier manipulation and optical anisotropy, incorporating heterojunctions and other functional interfaces into colloidal nanorod heterostructures represents an especially promising direction. In this talk, general challenges to the synthesis of complex-yet-well-defined colloidal nanorod heterostructures will first be discussed. Approaches such as spatially selective solution epitaxy, catalytic growth, cation exchange and combinations thereof can be exploited to achieve unique heterostructures with useful properties. A specific example of double-heterojunction nanorods (DHNRs) will be highlighted. Their engineered band structure with shape anisotropy improves charge injection, enhances light outcoupling and increases device lifetime of their light-emitting diodes (LEDs). At the same time, these features of DHNRs facilitate photo-induced charge separation, leading to useful photovoltaic response in high-performance, solution-processed LEDs. Emerging anisotropic colloidal heterostructures such as DHNRs can not only radically improve existing function but also impart new capabilities that could open up new directions for future generations of devices without adding complexity in manufacturing.
机译:有效分离,重组和直接电荷载流子的能力对于包括电子,光伏,显示器和固态照明在内的广泛应用至关重要。具有原子精度的工程带结构和异质接口是实现此类功能的一条明显途径。这样做不是通过广泛使用且具有成本效益的方式进行的。但是,这样的方法将允许在这些关键的应用领域中快速发展。胶体半导体纳米晶体从单一组成的“球形”颗粒到各种形状的复杂异质结构的演变,为通过可扩展溶液合成进行精密能带结构工程提供了许多机会。具有可用于组装,电荷载流子操纵和光学各向异性的各向异性形状,将异质结和其他功能性界面结合到胶体纳米棒异质结构中是一个特别有希望的方向。在本次演讲中,将首先讨论对尚未定义的复杂胶体纳米棒异质结构合成的一般挑战。可以利用诸如空间选择性溶液外延,催化生长,阳离子交换及其组合之类的方法来获得具有有用性质的独特异质结构。双异质结纳米棒(DHNRs)的特定示例将突出显示。其具有形状各向异性的工程带结构改善了电荷注入,增强了光输出耦合,并延长了其发光二极管(LED)的器件寿命。同时,DHNR的这些特性有助于光感应电荷分离,从而在高性能,溶液处理的LED中产生有用的光伏响应。新兴的各向异性胶体异质结构(例如DHNR)不仅可以从根本上改善现有功能,而且还赋予了新功能,这些新功能可以为下一代设备开辟新的方向,而不会增加制造的复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号