首页> 外文会议>SPIE Advanced Lithography Conference >EUV photoresist patterning characterization for imec N7/N5 technology
【24h】

EUV photoresist patterning characterization for imec N7/N5 technology

机译:用于imec N7 / N5技术的EUV光刻胶图案表征

获取原文

摘要

In the last year, the continuous efforts on the development of extreme ultraviolet (EUV) lithography has allowed to push the lithographic performance of the EUV photoresists on the ASML NXE:3300 full field exposure tool. Today imec N7 node (equivalent to foundry N5) is the first scaling node at which industry will likely insert EUV into production which will bring a reduction in processing steps therefore reducing total cost of ownership [1], increasing yield and reducing time to ramp. However, the high-volume-manufacturing (HVM) requirement to have a cost-effective low exposure dose photoresist (<20mJ/cm~2) remains a big challenge and roughness and pattern defectivity at nano-scale are the major limiting factors of the lithographic process window of EUV resist when looking at tight pitches below 40nm . To be effective during the lithographic EUV material screening phase for such tight pitches, it is necessary to implement complementary metrology analyses that can provide precise information on the resist roughness and a quick feedback on the quantification of nano-failures (nano-bridges. broken lines, merging or missing contacts) induced by a stochastic EUV patterning regime, the random nature of the light-matter interaction and consequent chemical reactions. Beside the traditional approach to characterize a resist with metrics as exposure latitude (EL%), depth of focus (DoF) and line-edge-roughness (LER) based on CDSEM measurements, we have used the power spectra density (PSD) [4] to get an unbiased value of the resist line roughness (LWR and LER) by using Fractilia metroLER™ commercial software. Further, we have used Stochalis imec software [5] to quantify patterning nano failures providing an early stage assessment on the patterning fidelity of the examined resists. We present the resist characterization results for 32nm dense line-space pattern on different substrates and for 36nm dense and orthogonal contact hole pitch pattern for different photoresists. Two positive tone chemically amplified (CA) resists have been identified at the exposure dose of 45mJ/cm2 and 33mJ/cm2 for logic (pitch 32nm dense line/space) and memory (pitch 36nm dense contact holes) use cases, respectively.
机译:去年,在开发极紫外(EUV)光刻技术方面的不懈努力,已在ASML NXE:3300全场曝光工具上推动了EUV光刻胶的光刻性能。如今,imec N7节点(相当于N5铸造厂)已成为第一个可扩展节点,工业界很可能在该节点上插入EUV到生产中,这将减少加工步骤,从而降低总体拥有成本[1],提高产量并缩短生产时间。然而,具有低成本的低曝光剂量光刻胶(<20mJ / cm〜2)的大批量生产(HVM)要求仍然是一个巨大的挑战,纳米级的粗糙度和图案缺陷是限制其发展的主要因素。当观察40nm以下的小间距时,EUV抗蚀剂的光刻工艺窗口。为了在如此小间距的光刻EUV材料筛选阶段有效,有必要进行补充的计量分析,以提供有关抗蚀剂粗糙度的精确信息以及对纳米失效(纳米桥)的定量的快速反馈。 ,合并或丢失的接触)是由随机EUV图案化方案,光与物质相互作用的随机性质以及随之而来的化学反应引起的。除了使用基于CDSEM测量的曝光宽容度(EL%),聚焦深度(DoF)和线边缘粗糙度(LER)来表征抗蚀剂的传统方法外,我们还使用了功率谱密度(PSD)[4通过使用Fractilia metroLER™商业软件获得抗蚀剂线粗糙度(LWR和LER)的无偏值。此外,我们已经使用Stochalis imec软件[5]来量化构图纳米故障,从而对所检查抗蚀剂的构图保真度提供了早期评估。我们提供了在不同基板上的32nm密集线间距图案以及对于不同光刻胶的36nm密集和正交接触孔间距图案的抗蚀剂表征结果。在逻辑(间距为32nm的密集线/间距)和存储器(间距为36nm的密集接触孔)用例中,已经分别以45mJ / cm2和33mJ / cm2的曝光剂量确定了两种正性化学放大(CA)抗蚀剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号