首页> 外文会议>IEEE International Magnetics Conference >Concurrent inverse effects of magnetostriction and electrostric-tionin magnetoelectric layered structures.
【24h】

Concurrent inverse effects of magnetostriction and electrostric-tionin magnetoelectric layered structures.

机译:磁电分层结构中磁致伸缩和电吸的同时逆效应。

获取原文

摘要

The structures comprising intermittently bonded (laminated or deposited) magnetostrictive and piezoelectric layers attract a keen interest in sensor applications since they exhibit strong strain-mediated magnetoelectric (ME) coupling [1]. The bonding compliance exerts hidden stresses on the structure's layers that cause changes in their properties at no mechanical load. We termed such effects in the ME structures concurrent inverse effects of magnetostriction and electrostriction (IEME), similarly to inverse effect of magnetostriction in ferromagnetic magnetostrictive materials [2], where it means a change in the magnetic anisotropy, and so the magnetization curve under external stresses. We studied theoretically and experimentally IEME for a laterally wide bi/tri-layer ME structure. Our theory is based on minimization of the total energy including bare elastic [3], magnetic-anisotropy and magneto-elastic energies [4] under the strains matching and zeromean traction conditions at the layers interfaces and facets, respectively. Unlike the previous theories [4], [5], our theory involves also the shear strain and traction. We predicted IEME of the following types: (i) a latent-stress induced magnetic anisotropy unnoted previously [5], [6]; (ii) a decrease of the ME coupling coefficient [5] below the values obtained previously [5], [6], which may make a slipping correction factor [6] to be redundant; (iii) a decrease of the dielectric permittivity of the piezoelectric layer(s) larger than in the previous theories [5], [6]. Our materials were Alfa Aesar 99.95% purity polycrystalline Ni foil and APC-844 ceramic lead zinc titanate (PZT). Two 20x20mm 2 area samples with 0.5 mm thick Ni and 0.83 mm thick laminates were used for the magnetostriction measurements, and a pair of 5x2 mm 2 area samples with 0.25 mm thick Ni and 0.58 mm thick laminates, for the magnetization measurements. The magnetostriction was measured with Vishay Micro-Measurements two-axis SR-4 strain gauges. The room temperature magnetization curves were obtained with a Physical Properties Measurement System (PPMS) machine. The type (i) IEME is seen in Figs.1 and 2 which show the magnetization and strain curves of the above Ni layer and the Ni/PZT laminate, respectively. A notable decrease of the initial susceptibility and magnetic saturation lag in the laminate, compared to the bare Ni layer is observed in Fig.1 and similar effects for the magnetostriction in Fig.2. Except reduction of the ME coefficient α, as compared to the Harshe et. results [5], we predicted a shift of the magnetic bias of the α maximum abou twice that predicted from differential magnetostriction of the standalon Ni layer ~68 Oe, see in Fig.2, as assumed in previous theories [5], [6]. Our theoretical results on all above noted IEME agree well with the expriment.
机译:包含间歇性粘合(层压或沉积)的磁致伸缩和压电层的结构在传感器应用中引起了强烈的兴趣,因为它们表现出强的应变介导的磁电(ME)耦合[1]。粘结顺应性会在结构层上施加隐藏应力,从而在无机械负载的情况下导致其性能发生变化。我们在ME结构中将这种效应称为并发磁致伸缩和电致伸缩的反作用(IEME),类似于铁磁磁致伸缩材料中的磁致伸缩的反作用[2],这意味着磁各向异性的变化,因此外部条件下的磁化曲线压力。我们在理论上和实验上研究了IEME的横向宽的双层/三层ME结构。我们的理论基于最小化总能量,包括在层界面和面的应变匹配和零均值牵引条件下的裸弹性[3],磁各向异性和磁弹性能[4]。与先前的理论[4],[5]不同,我们的理论还涉及剪切应变和牵引力。我们预测了以下类型的IEME:(i)以前未注意到的潜在应力感应的磁各向异性[5],[6]; (ii)将ME耦合系数[5]降低到先前[5],[6]所获得的值以下,这可能会使滑移校正因子[6]变得多余; (iii)压电层的介电常数的减小大于先前理论[5],[6]中的减小。我们的材料是Alfa Aesar 99.95%纯度的多晶镍箔和APC-844陶瓷钛酸铅锌(PZT)。两个20x20mm 2 面积样品具有0.5毫米厚的镍和0.83毫米厚的层压板用于磁致伸缩测量,一对5x2毫米 2 用0.25毫米厚的镍和0.58毫米厚的层压板对样品进行磁化测量。磁致伸缩是用Vishay Micro-Measurements两轴SR-4应变仪测量的。使用物理性能测量系统(PPMS)机器获得室温磁化曲线。在图1和图2中可以看到(i)IEME类型,它们分别示出了上述Ni层和Ni / PZT叠层的磁化和应变曲线。与裸露的镍层相比,层压板的初始磁化率和磁饱和滞后显着降低,图1观察到,磁致伸缩的相似作用如图2所示。与Harshe等人相比,除了ME系数α降低之外,结果[5],我们预测的最大αabou的磁偏置的位移是从标准铝Ni层〜68 Oe的微磁致伸缩所预测的两倍,见图2,如先前的理论[5],[6]所假设。 ]。我们在以上所有提到的IEME上的理论结果都与实验相吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号