首页> 外文会议>International Magnetics Conference >Concurrent inverse effects of magnetostriction and electrostric-tionin magnetoelectric layered structures.
【24h】

Concurrent inverse effects of magnetostriction and electrostric-tionin magnetoelectric layered structures.

机译:磁致伸缩和电粒子磁电层结构的并发逆效应。

获取原文

摘要

The structures comprising intermittently bonded (laminated or deposited) magnetostrictive and piezoelectric layers attract a keen interest in sensor applications since they exhibit strong strain-mediated magnetoelectric (ME) coupling [1]. The bonding compliance exerts hidden stresses on the structure's layers that cause changes in their properties at no mechanical load. We termed such effects in the ME structures concurrent inverse effects of magnetostriction and electrostriction (IEME), similarly to inverse effect of magnetostriction in ferromagnetic magnetostrictive materials [2], where it means a change in the magnetic anisotropy, and so the magnetization curve under external stresses. We studied theoretically and experimentally IEME for a laterally wide bi/tri-layer ME structure. Our theory is based on minimization of the total energy including bare elastic [3], magnetic-anisotropy and magneto-elastic energies [4] under the strains matching and zeromean traction conditions at the layers interfaces and facets, respectively. Unlike the previous theories [4], [5], our theory involves also the shear strain and traction. We predicted IEME of the following types: (i) a latent-stress induced magnetic anisotropy unnoted previously [5], [6]; (ii) a decrease of the ME coupling coefficient [5] below the values obtained previously [5], [6], which may make a slipping correction factor [6] to be redundant; (iii) a decrease of the dielectric permittivity of the piezoelectric layer(s) larger than in the previous theories [5], [6]. Our materials were Alfa Aesar 99.95% purity polycrystalline Ni foil and APC-844 ceramic lead zinc titanate (PZT). Two 20x20mm 2 area samples with 0.5 mm thick Ni and 0.83 mm thick laminates were used for the magnetostriction measurements, and a pair of 5x2 mm 2 area samples with 0.25 mm thick Ni and 0.58 mm thick laminates, for the magnetization measurements. The magnetostriction was measured with Vishay Micro-Measurements two-axis SR-4 strain gauges. The room temperature magnetization curves were obtained with a Physical Properties Measurement System (PPMS) machine. The type (i) IEME is seen in Figs.1 and 2 which show the magnetization and strain curves of the above Ni layer and the Ni/PZT laminate, respectively. A notable decrease of the initial susceptibility and magnetic saturation lag in the laminate, compared to the bare Ni layer is observed in Fig.1 and similar effects for the magnetostriction in Fig.2. Except reduction of the ME coefficient α, as compared to the Harshe et. results [5], we predicted a shift of the magnetic bias of the α maximum abou twice that predicted from differential magnetostriction of the standalon Ni layer ~68 Oe, see in Fig.2, as assumed in previous theories [5], [6]. Our theoretical results on all above noted IEME agree well with the expriment.
机译:包括间歇粘合的(层压或沉积的)磁致伸缩和压电层的结构吸引了传感器应用的敏锐兴趣,因为它们表现出强烈的应变介导的磁电(ME)耦合[1]。粘合顺应性在结构层上施加隐蔽的应力,从没有机械负载,导致其性能变化。我们称在ME中的这种效果使得磁致伸缩和电遥遥测(IEME)的并发逆效应,类似于铁磁磁致伸缩材料中的磁致伸缩的逆效果[2],在那里它意味着磁各向异性的变化,因此在外部的磁化曲线压力。我们从理论上讲和实验地研究了横向宽的BI /三层ME结构。我们的理论基于在层匹配和Zeromean牵引条件下的裸弹性[3],磁各向异性和磁弹性能量[4]的总能量的最小化,分别在层界面和刻面处的菌株匹配和Zeromean牵引条件下。与以前的理论不同,[5],我们的理论也涉及剪切应变和牵引力。我们预测了以下类型的IEME:(i)潜伏诱导的磁各向异性以前[5],[6]; (ii)在预先获得的值下方的ME耦合系数[5]的减少[5],[6],其可以使滑动校正因子[6]呈冗余; (iii)压电层的介电常数大于在先前的理论中的介电常数[5],[6]。我们的材料是Alfa AESAR 99.95%纯度多晶Ni箔和APC-844陶瓷铅锌钛酸锌(PZT)。两个20x20mm. 2 使用0.5mm厚Ni和0.83mm厚的层压板的区域样品用于磁致伸缩测量,一对5x2 mm 2 区域样品,具有0.25mm厚Ni和0.58毫米厚的层压板,用于磁化测量。用Vishay微量测量双轴SR-4应变仪测量磁致伸缩。使用物理性能测量系统(PPMS)机获得室温磁化曲线。在图1和图2中可以看出(I)IEME,其示出了上述Ni层和Ni / PZT层压板的磁化和应变曲线。在图1中观察到与裸Ni层相比,层压板中的初始敏感性和磁饱和滞后的显着降低,以及图2中的磁致伸缩的类似效果。除了与Harshe等相比,除了ME系数α之外。结果[5],我们预测了α最大偏差的偏差两次从Standalon Ni Layer〜68 Oe的差分磁致伸缩预测的两次,如以前的理论中所假设在图2中,[5],[6 ]。我们所有上面都注意到的理论结果,IEME与expring很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号