首页> 外文学位 >Electronic band structure effects in monolayer, bilayer, and hybrid graphene structures.
【24h】

Electronic band structure effects in monolayer, bilayer, and hybrid graphene structures.

机译:电子带结构影响单层,双层和杂化石墨烯结构。

获取原文
获取原文并翻译 | 示例

摘要

Since its discovery in 2005, graphene has been the focus of intense theoretical and experimental study owing to its unique two-dimensional band structure and related electronic properties. In this thesis, we explore the electronic properties of graphene structures from several perspectives including the magnetoelectrical transport properties of monolayer graphene, gap engineering and measurements in bilayer graphene, and anomalous quantum oscillation in the monolayer-bilayer graphene hybrids. We also explored the device implications of our findings, and the application of some experimental techniques developed for the graphene work to the study of a complex oxide, Ca3Ru2O7, exhibiting properties of strongly correlated electrons.;Graphene's high mobility and ballistic transport over device length scales, make it suitable for numerous applications. However, two big challenges remain in the way: maintaining high mobility in fabricated devices, and engineering a band gap to make graphene compatible with logical electronics and various optical devices. We address the first challenge by experimentally evaluating mobilities in scalable monolayer graphene-based field effect transistors (FETs) and dielectric-covered Hall bars. We find that the mobility is limited in these devices, and is roughly inversely proportional to doping. By considering interaction of graphene's Dirac fermions with local charged impurities at the interface between graphene and the top-gate dielectric, we find that Coulomb scattering is responsible for degraded mobility.;Even in the cleanest devices, a band gap is still desirable for electronic applications of graphene. We address this challenge by probing the band structure of bilayer graphene, in which a field-tunable energy band gap has been theoretically proposed. We use planar tunneling spectroscopy of exfoliated bilayer graphene flakes demonstrate both measurement and control of the energy band gap. We find that both the Fermi level and electronic structure are highly sensitive to tunnel bias-induced charging in these devices, an effect that is traditionally neglected in other materials. However, careful consideration of both these effects and non-ideal tunneling processes allows extraction of valuable information from the tunneling spectra. We compare the tunable insulating state to our transport studies of bi-layer graphene-based FETs with similar dielectric environments. This work, as well as our work on top-gated monolayer-based devices, identifies the integration of graphene and a gate dielectric as being the next great challenge towards the realization of graphene-based electronics.;We also report the discovery of anomalous quantum oscillations in magnetotransport measurements of monolayer and bilayer graphene hybrids. In these graphene hybrid structures, the Fermi levels of either portion lock at their interface, and the greatly different energy scales of emergent Landau levels support strong charge imbalance. The nature the interface states are yet to be clarified.;Finally, we extend the techniques of device fabrication and measurement to exfoliated flakes of a layered material, Ca3Ru2O 7. This strongly correlated electronic system hosts a variety of exotic phenomena at low temperatures, which have been suggested to result from complex d-orbital interactions. We compare transport measurements of flakes to previous studies in bulk crystals, and explore the effects of tuning charge carrier density using an ionic liquid gate to induce densities several orders of magnitude greater than is possible with conventional dielectrics.
机译:自从2005年被发现以来,石墨烯由于其独特的二维能带结构和相关的电子性能而成为广泛的理论和实验研究的焦点。本文从多个方面探讨了石墨烯结构的电子性质,包括单层石墨烯的磁电输运特性,双层石墨烯的间隙工程和测量以及单层-双层石墨烯杂化体的异常量子振荡。我们还探索了我们发现的器件含义,并将为石墨烯工作开发的一些实验技术应用于研究具有强相关电子性质的复合氧化物Ca3Ru2O7;石墨烯在器件长度尺度上的高迁移率和弹道传输。 ,使其适用于众多应用。然而,仍然存在两个重大挑战:在制造的设备中保持高迁移率,以及设计带隙以使石墨烯与逻辑电子设备和各种光学设备兼容。我们通过实验评估可伸缩单层基于石墨烯的场效应晶体管(FET)和覆盖电介质的霍尔棒中的迁移率来解决第一个挑战。我们发现这些器件的迁移率受到限制,并且与掺杂大致成反比。通过考虑石墨烯的狄拉克费米子与石墨烯与顶栅电介质之间的界面处的局部带电杂质的相互作用,我们发现库仑散射是导致迁移率降低的原因;即使在最清洁的器件中,带隙仍然是电子应用所需要的石墨烯。我们通过探测双层石墨烯的能带结构解决了这一挑战,其中理论上已经提出了一种可现场调节的能带隙。我们使用剥落的双层石墨烯薄片的平面隧穿光谱法证明了能带隙的测量和控制。我们发现费米能级和电子结构都对这些器件中的隧道偏置感应电荷高度敏感,而传统上在其他材料中却忽略了这一效应。但是,仔细考虑这些影响和非理想的隧穿过程,可以从隧道光谱中提取有价值的信息。我们将可调绝缘状态与我们在具有相似介电环境的双层石墨烯基FET的传输研究中进行了比较。这项工作以及我们在基于顶部门控的单层器件上的工作,将石墨烯和栅极电介质的集成确定为实现基于石墨烯的电子器件的下一个重大挑战。;我们还报告了异常量子的发现单层和双层石墨烯杂化体磁传输测量中的振荡。在这些石墨烯杂化结构中,任一部分的费米能级都锁定在它们的界面上,而出现的朗道能级的极大不同的能级则支持强烈的电荷不平衡。最后,我们将器件的制造和测量技术扩展到了片状材料Ca3Ru2O 7的片状薄片上。这种高度相关的电子系统在低温下具有多种奇特的现象,有人认为这是由于复杂的d轨道相互作用引起的。我们将鳞片状晶体的传输测量结果与以前在块状晶体中的研究进行了比较,并探索了使用离子液体门调节电荷载流子密度来感应密度的作用,该密度比常规电介质高出几个数量级。

著录项

  • 作者

    Puls, Conor.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Physics Low Temperature.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号