首页> 外文会议>IEEE International Conference on Computer Vision Workshops >3D Garment Digitisation for Virtual Wardrobe Using a Commodity Depth Sensor
【24h】

3D Garment Digitisation for Virtual Wardrobe Using a Commodity Depth Sensor

机译:使用商品深度传感器的虚拟衣柜3D服装数字化

获取原文

摘要

A practical garment digitisation should be efficient and robust to minimise the cost of processing a large volume of garments manufactured in every season. In addition, the quality of a texture map needs to be high to deliver a better user experience of VR/AR applications using garment models such as digital wardrobe or virtual fitting room. To address this, we propose a novel pipeline for fast, low-cost, and robust 3D garment digitisation with minimal human involvement. The proposed system is simply configured with a commodity RGB-D sensor (e.g. Kinect) and a rotating platform where a mannequin is placed to put on a target garment. Since a conventional reconstruction pipeline such as Kinect Fusion (KF) tends to fail to track the correct camera pose under fast rotation, we modelled the camera motion and fed this as a guidance of the ICP process in KF. The proposed method is also designed to produce a high-quality texture map by stitching the best views from a single rotation, and a modified shape from silhouettes algorithm has been developed to extract a garment model from a mannequin.
机译:实际的服装数字化应该高效且可靠,以最大程度地减少每个季节生产的大量服装的加工成本。此外,纹理贴图的质量需要很高,以便使用数字衣柜或虚拟试衣间等服装模型提供更好的VR / AR应用程序用户体验。为了解决这个问题,我们提出了一种新颖的管道,可在最少的人力参与下实现快速,低成本和强大的3D服装数字化。所提出的系统仅配置有商品RGB-D传感器(例如Kinect)和旋转平台,在该旋转平台上放置了人体模型以放置在目标服装上。由于传统的重建管线(例如Kinect Fusion(KF))在快速旋转下往往无法跟踪正确的相机姿态,因此我们对相机运动进行了建模,并将其作为KF中ICP过程的指导。所提出的方法还被设计为通过单次旋转即可拼接最佳视图,从而生成高质量的纹理贴图,并且已经开发了从轮廓算法修改后的形状以从人体模型中提取服装模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号