【24h】

THERMO-MECHANICAL STUDY OF ALN THIN-FILMS AS HEAT SPREADERS IN III-V PHOTONIC DEVICES

机译:III-V光子器件中AlN薄膜作为散热器的热力学研究

获取原文

摘要

Ridge-type hybrid III-V active waveguides on silicon-on-insulator (SOI) substrates demonstrate poor thermal performance due to several factors. One aspect of their typical design that leads to large thermal resistance is the use of polymer-based optical cladding around the waveguide. To address this issue, we have been exploring the use of deposited aluminium nitride (AlN) as an alternative optical cladding material. AlN is an excellent dielectric with optical properties making it suitable as a cladding around III-V waveguides. Crucially, this material can demonstrate thermal conductivities ~100 times larger than current polymer cladding materials such as benzocyclobutene (BCB). Electro-thermo simulation results suggest that replacing BCB with A1N could reduce device thermal resistance by ~2 times. However, our previous linear elastic mechanical modelling indicates that mismatched thermal expansion has the potential to cause mechanical tensile failure in the III-V waveguide when cooled from the processing temperature to room temperature if AlN is deposited in a neutral residual stress state. Here, to facilitate the design of encapsulated reliable hybrid semiconductor lasers, we extend our finite element, electro-thermo-mechanical model to include a residual stress in the deposited AlN. Using the Christensen criterion to define the maximum allowable stress in the device, our simulations indicate that there is a window of residual compressive stress in the AlN where mechanical failure may be avoided. To assess the feasibility of accessing this region of compressive residual stress while maintaining suitable thermal properties in the deposited AlN, we measure the thermal conductivity of AlN thin films (~1.6 μm thick) deposited on silicon using a time-domain thermo reflectance (TDTR) setup. Stress measurements demonstrate compressive residual stresses ranging from ~0 to -0.5 GPa. The TDTR measurement results reveal a similar thermal conductivity of ~155 Wm~(-1)K~(-1) over the entire range of compressive residual stress. These results strengthen the promise of encapsulating III-V active waveguides with AlN that simultaneously satisfy both thermal and mechanical requirements.
机译:绝缘体上硅(SOI)衬底上的脊型混合III-V有源波导由于多种因素而表现出较差的热性能。其典型设计的一个方面会导致较大的热阻,其中之一是在波导周围使用了基于聚合物的光学覆层。为了解决这个问题,我们一直在探索将沉积的氮化铝(AlN)用作替代光学覆层材料的方法。 AlN是具有光学特性的出色电介质,使其适合用作III-V波导周围的包层。至关重要的是,这种材料的导热率比目前的聚合物覆层材料(例如苯并环丁烯(BCB))大100倍左右。电热仿真结果表明,用A1N代替BCB可使器件的热阻降低约2倍。但是,我们以前的线性弹性机械模型表明,如果AlN以中性残余应力状态沉积,则当从加工温度冷却至室温时,失配的热膨胀有可能在III-V型波导中引起机械拉伸破坏。在这里,为了简化封装可靠的混合半导体激光器的设计,我们扩展了有限元的电热机械模型,以在沉积的AlN中包括残余应力。使用Christensen准则定义设备中的最大允许应力,我们的仿真表明,AlN中存在残余压缩应力的窗口,可以避免机械故障。为了评估在保持沉积的AlN中合适的热性能的同时访问该压缩残余应力区域的可行性,我们使用时域热反射率(TDTR)测量了沉积在硅上的AlN薄膜(〜1.6μm厚)的导热系数设置。应力测量表明,残余压缩应力范围为〜0至-0.5 GPa。 TDTR测量结果表明,在整个压缩残余应力范围内,热导率约为155 Wm〜(-1)K〜(-1)。这些结果增强了用AlN封装III-V有源波导的希望,该波导同时满足热和机械要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号