首页> 外文会议>Conference on Micro- and Nanotechnology Sensors, Systems, and Applications >Bias-tunable IR photodetector based on asymmetrically doped GaAs/AlGaAs double-quantum-well nanomaterial for remote temperature sensing
【24h】

Bias-tunable IR photodetector based on asymmetrically doped GaAs/AlGaAs double-quantum-well nanomaterial for remote temperature sensing

机译:基于不对称掺杂GaAs / AlGaAs双量子阱纳米材料的偏压可调红外光电探测器用于遥感

获取原文

摘要

We designed, fabricated, and characterized multi-color IR photodetectors with asymmetrical doping of GaAs/AlGaAs double quantum wells (DQW). We measured and analyzed spectral and noise characteristics to evaluate feasibility of these photodetectors for remote temperature sensing at liquid nitrogen temperatures. The bias voltage controls the charge distribution between the two wells in a DQW unit and provides effective tuning of IR induced electron transitions. We have found that the responsivity of our devices is symmetrical and weakly dependent on the bias voltage because the doping asymmetry compensates the effect of dopant migration in the growth direction. At the same time, the asymmetrical doping strongly enhances the selectivity and tunability of spectral characteristics by bias voltage. Multicolor detection of our QWIP is realized by varying the bias voltage. Maximum detection wavelength moves from 7.5 μm to 11.1 μm by switching applied bias from -5 V to 4 V. Modeling shows significant dependence of the photocurrent ratio on the object temperature regardless of its emissivity and geometrical factors. We also experimentally investigated the feasibility of our devices for remote temperature sensing by measuring the photocurrent as a response to blackbody radiation with the temperature from 300°C to 1000°C in the range of bias voltages from -5 V to 5 V. The agreement between modelling and experimental results demonstrates that our QWIP based on asymmetrically doped GaAs/AlGaAs DQW nanomaterial is capable of remote temperature sensing. By optimizing the physical design and varying the doping level of quantum wells, we can generalize this approach to higher temperature measurements. In addition, continuous variation of bias voltage provides fast collection of large amounts of photocurrent data at various biases and improves the accuracy of remote temperature measurements via appropriate algorithm of signal processing.
机译:我们设计,制造和表征了具有非对称掺杂GaAs / AlGaAs双量子阱(DQW)的多色红外光电探测器。我们测量并分析了光谱和噪声特性,以评估这些光电探测器在液氮温度下进行遥感的可行性。偏置电压控制DQW单元中两个阱之间的电荷分布,并提供对IR感应电子跃迁的有效调节。我们发现,由于掺杂的不对称性会补偿掺杂剂在生长方向上的迁移效应,因此器件的响应性是对称的,并且几乎不依赖于偏置电压。同时,非对称掺杂通过偏置电压极大地增强了光谱特性的选择性和可调谐性。我们的QWIP的多色检测是通过改变偏置电压来实现的。通过将施加的偏压从-5 V切换到4 V,最大检测波长从7.5μm移至11.1μm。建模显示光电流比对物体温度的显着依赖性,无论其发射率和几何因素如何。我们还通过在-5 V至5 V的偏置电压范围内测量温度范围为300°C至1000°C的黑体辐射的光电流来实验性地研究了我们的设备用于远程温度感测的可行性。该协议建模和实验结果之间的关系表明,我们基于不对称掺杂GaAs / AlGaAs DQW纳米材料的QWIP能够进行远程温度感测。通过优化物理设计并改变量子阱的掺杂水平,我们可以将这种方法推广到更高的温度测量中。此外,偏置电压的连续变化可在各种偏置条件下快速收集大量光电流数据,并通过适当的信号处理算法提高了远程温度测量的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号