首页> 外文会议>ASME Internal Combustion Engine Division technical conference >AN EVALUATION OF COMBUSTION AND EMISSIONS PERFORMANCE WITH LOW CETANE NAPHTHA FUELS IN A MULTI-CYLINDER HEAVY-DUTY DIESEL ENGINE
【24h】

AN EVALUATION OF COMBUSTION AND EMISSIONS PERFORMANCE WITH LOW CETANE NAPHTHA FUELS IN A MULTI-CYLINDER HEAVY-DUTY DIESEL ENGINE

机译:低缸十六烷汽油燃料在多缸重型柴油机中燃烧和排放性能的评价

获取原文
获取外文期刊封面目录资料

摘要

Future projections in global transportation fuel use show a demand shift towards diesel and away from gasoline. At the same time greenhouse gas regulations will drive higher vehicle fuel efficiency and lower well-to-wheel CO_2 production. Naphtha, a contributor to the gasoline stream and requiring less processing at the refinery level, is an attractive candidate to mitigate this demand shift while lowering the overall greenhouse gas impact. In this work, low cetane and high volatility gasoline-like fuels have shown potential to achieve high fuel efficiency with low engine-out emissions in a production commercial vehicle engine. This study investigates the combustion and emissions performance of two low cetane naphtha fuels (Naphtha 1: RON59; Naphtha 2: RON69) and one ultra-low sulfur diesel (ULSD) in a model year (MY) 2013, six-cylinder, heavy-duty diesel engine. The engine is equipped with a single-stage variable geometry turbocharger (VGT) and a fuel injection system that is capable of 2500 bar fuel injection pressure. The engine has a stock geometric compression ratio of 18.9. To date, most studies in this area have been conducted using single-cylinder research engines. Aramco aims to better understand the implications on hardware and software design in a multi-cylinder engine with a production engine air system. Engine testing was focused on the Heavy-Duty Supplemental Emissions Test (SET) "B" speed over a load sweep from 5 to 15 bar BMEP. At each operating point, NO_x sweeps were conducted over wide ranges (e.g., 0.2→3 g/hp-hr) to understand the implications of fuel reactivity as well as other properties on combustion behavior under both high temperature mixing-controlled combustion and low temperature premixed combustion. At 10.15 bar BMEP, mixing-controlled combustion dominates the engine combustion process. Under a compression ratio of 18.9, cylinder pressure and temperature are sufficiently high to suppress the reactivity (cetane number) difference between ULSD and the low cetane naphtha fuels. As a result, the three test fuels showed similar ignition delay under high temperature and pressure conditions. Nevertheless, naphtha fuels still exhibited notable soot reduction compared to ULSD. Under mixing-controlled combustion, this is likely due to their lower aromatic content and higher volatility. At 10 bar BMEP, Naphtha 1 generated less soot than Naphtha 2 since it contains less aromatics and is more volatile. When operated at light load, in a less reactive thermal environment, the lower reactivity naphtha fuels led to longer ignition delays than ULSD. As a result, the soot benefit of naphtha fuels was enhanced. Overall, naphtha fuels and ULSD had similar fuel efficiency. Utilizing the soot benefit of the naphtha fuels, engine-out NO_x was calibrated from the production level of 3-4 g/hp-hr down to 2-2.5 g/hp-hr over the twelve non-idle SET steady-state modes. At this reduced NO_x level, naphtha fuels were still able to maintain a soot advantage over ULSD and remain "soot-free" (smoke ≤ 0.2 FSN) while achieving diesel-equivalent fuel efficiency. Finally, partially premixed compression ignition (PPCI) low temperature combustion (LTC) operation (NO_x ≤ 0.2 g/hp-hr; smoke ≤ 0.2 FSN) was achieved with both of the naphtha fuels at 5 bar BMEP through a late injection approach with high injection pressure. Under high EGR dilution, Naphtha 2 showed an appreciably longer ignition delay than Naphtha 1, resulting in a soot reduction benefit. Early injection PPCI operation cannot be attained with the stock engine compression ratio due to excessive pressure rise rates. Although the late injection PPCI operation offered a significant NO_x benefit over mixing-controlled combustion operation, it led to lower fuel efficiency with undesirably late combustion phasing. This points the research towards a lower engine compression ratio and an air system upgrade to promote high efficiency PPCI LTC operation.
机译:对全球运输燃料使用的未来预测表明,需求将转向柴油而不是汽油。同时,温室气体法规将推动更高的车辆燃油效率和更低的轮对车轮CO_2产量。石脑油是汽油流的贡献者,在炼油厂一级需要较少的处理,是减轻这种需求变化同时降低总体温室气体影响的有吸引力的候选者。在这项工作中,低十六烷值和高挥发性的类汽油燃料已显示出在商用商用车发动机中实现高燃油效率和低发动机输出排放的潜力。这项研究调查了2013年(MY)型号六缸,重油,汽油和汽油的两种低十六烷值石脑油燃料(石脑油1:RON59;石脑油2:RON69)和一种超低硫柴油(ULSD)的燃烧和排放性能。柴油发动机。发动机配备了单级可变几何涡轮增压器(VGT)和燃油喷射系统,该系统的燃油喷射压力为2500 bar。发动机的储备几何压缩比为18.9。迄今为止,该领域的大多数研究都是使用单缸研究引擎进行的。阿美公司的目标是更好地理解带有生产发动机空气系统的多缸发动机对硬件和软件设计的影响。发动机测试的重点是在5到15 bar BMEP的负荷扫描下的重型补充排放测试(SET)“ B”速度。在每个工作点,都在较宽的范围内(例如0.2→3 g / hp-hr)进行NO_x扫描,以了解燃料反应性以及其他特性对高温混合控制燃烧和低温下燃烧行为的影响。预混燃烧。在10.15 bar BMEP下,混合控制的燃烧在发动机燃烧过程中占主导地位。在18.9的压缩比下,气缸压力和温度足够高,可以抑制ULSD和低十六烷值石脑油燃料之间的反应性(十六烷值)差异。结果,三种测试燃料在高温和高压条件下显示出相似的点火延迟。尽管如此,与超低硫柴油相比,石脑油燃料仍表现出显着的烟尘减少。在混合控制的燃烧下,这可能是由于其较低的芳族含量和较高的挥发性。在10 bar BMEP下,石脑油1的烟灰比石脑油2少,因为它含有较少的芳族化合物且挥发性更大。当在轻负载下运行时,在反应性较低的热环境中,较低反应性的石脑油燃料比ULSD导致更长的点火延迟。结果,石脑油燃料的烟灰益处得到增强。总体而言,石脑油燃料和超低硫柴油具有相似的燃料效率。利用石脑油燃料的烟ot益处,在十二个非怠速SET稳态模式下,将发动机输出的NO_x校准为从3-4 g / hp-hr的生产水平降低到2-2.5 g / hp-hr的水平。在降低的NO_x水平下,石脑油燃料仍然能够保持相对于ULSD的烟尘优势,并保持“无烟尘”(烟气≤0.2 FSN),同时实现与柴油相当的燃油效率。最后,两种石脑油燃料均在5 bar BMEP下通过后期喷射方式实现了高浓度的预混合压缩点火(PPCI)低温燃烧(LTC)操作(NO_x≤0.2 g / hp-hr;烟气≤0.2 FSN)注射压力。在较高的EGR稀释度下,石脑油2的点火延迟比石脑油1更长,从而减少了烟尘。由于过高的压力上升率,无法在储备发动机压缩比下实现提前喷射PPCI操作。尽管后期喷射PPCI操作比混合控制的燃烧操作具有明显的NO_x优势,但它导致燃油效率降低,并且后期燃烧阶段不合需要。这表明该研究朝着降低发动机压缩比和升级空气系统以促进高效PPCI LTC操作的方向进行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号