首页> 外文会议>IEEE International Conference on Plasma Sciences >Applications of laser plasma deposition
【24h】

Applications of laser plasma deposition

机译:激光等离子体沉积的应用

获取原文

摘要

Summary form only given. Laser plasma deposition or Pulsed laser deposition (PLD) is an attractive technique for growth of different materials for a variety of applications including thin films and nanostructures. The main advantage of using PLD for growth of materials is low cross contamination while controlling the stoichiometry of the material. Controlling the laser fluence, partial pressure of gas in the PLD chamber and substrate temperature can be used to change the material growth rate and crystal properties.Here we present our work for growth of different materials and nano-structures using PLD for applications ranging from thin film transistors (TFTs) to free-standing thin films which can be utilized for targets in laser matter interaction experiments. Growth of thin films of wide bandgap semiconductors like zinc oxide (ZnO) was optimized for high mobility and low doping density to fabricate TFTs. The optimized ZnO thin films, grown using a ns KrF laser, demonstrated a mobility as high as 15 V.cm2/s [1]. Nanowires were grown using Glancing Angle Pulsed Laser Deposition technique [2]. Nanodots were grown using both ns KrF and fs Ti-sapphire laser. E-beam lithography mask was also used to grow uniform sized nanodot arrays of various materials like Si, Ge, ZnO and GaAs [3]. These nanodots can be utilized for different applications like solar cells, LEDs, sensors, etc. We have also utilized PLD for growth of free-standing thin films of diamond like carbon (DLC) for high intensity laser plasma experiments. These DLC free-standing films demonstrate damage threshold as high as 7x1010 W/cm2 [4]. Thin metal films with large crystalline sizes are also being grown as freestanding targets in experiments using ultrafast electron diffraction to probe laser produced warm dense matter. The results from all these studies will be presented to demonstrate the various applications of laser plasma deposition technique.
机译:仅提供摘要表格。激光等离子体沉积或脉冲激光沉积(PLD)是一种用于各种材料(包括薄膜和纳米结构)的不同材料生长的有吸引力的技术。使用PLD进行材料生长的主要优点是,在控制材料的化学计量的同时,交叉污染低。控制激光通量,PLD腔室中的气体分压和衬底温度可用于改变材料的生长速率和晶体特性。在此,我们介绍了我们的工作,使用PLD进行不同材料和纳米结构的生长,适用于从薄到薄的各种应用。薄膜晶体管(TFT)到独立的薄膜,这些薄膜可用于激光物质相互作用实验中的目标。针对宽带隙半导体(如氧化锌(ZnO))的薄膜生长进行了优化,以实现高迁移率和低掺杂密度,从而制造出TFT。使用ns KrF激光器生长的经过优化的ZnO薄膜显示出高达15 V.cm2 / s的迁移率[1]。使用掠角脉冲激光沉积技术生长纳米线[2]。纳米点是使用ns KrF和fs Ti蓝宝石激光器生长的。电子束光刻掩模还用于生长各种材料(如Si,Ge,ZnO和GaAs)的均一尺寸的纳米点阵列[3]。这些纳米点可用于不同的应用,例如太阳能电池,LED,传感器等。我们还利用PLD来生长独立的类金刚石碳薄膜(DLC),用于高强度激光等离子体实验。这些DLC自支撑膜的损伤阈值高达7x1010 W / cm2 [4]。在使用超快电子衍射探测激光产生的热致密物质的实验中,具有较大晶体尺寸的金属薄膜也正在作为独立的靶材生长。所有这些研究的结果将被展示以证明激光等离子体沉积技术的各种应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号