首页> 外文会议>Conference on alternative lithographic technologies VII >Development of Ballistic Hot Electron Emitter and its Applications to Parallel Processing: Active-Matrix Massive Direct-Write Lithography in Vacuum and Thin Films Deposition in Solutions
【24h】

Development of Ballistic Hot Electron Emitter and its Applications to Parallel Processing: Active-Matrix Massive Direct-Write Lithography in Vacuum and Thin Films Deposition in Solutions

机译:弹道热电子发射器的开发及其在平行处理中的应用:在溶液中真空和薄膜沉积中的主动矩阵大规模直接写入光刻

获取原文

摘要

Making the best use of the characteristic features in nanocrystalline Si (nc-Si) ballistic hot electron source, the alternative lithographic technology is presented based on the two approaches: physical excitation in vacuum and chemical reduction in solutions. The nc-Si cold cathode is a kind of metal-insulator-semiconductor (MIS) diode, composed of a thin metal film, an nc-Si layer, an n~+-Si substrate, and an ohmic back contact. Under a biased condition, energetic electrons are uniformly and directionally emitted through the thin surface electrodes. In vacuum, this emitter is available for active-matrix drive massive parallel lithography. Arrayed 100 × 100 emitters (each size: 10 × 10 μm~2, pitch: 100 μm) are fabricated on silicon substrate by conventional planar process, and then every emitter is bonded with integrated complementary metal-oxide-semiconductor (CMOS) driver using through-silicon-via (TSV) interconnect technology. Electron multi-beams emitted from selected devices are focused by a micro-electro-mechanical system (MEMS) condenser lens array and introduced into an accelerating system with a demagnification factor of 100. The electron accelerating voltage is 5 kV. The designed size of each beam landing on the target is 10 × 10 nm~2 in square. Here we discuss the fabrication process of the emitter array with TSV holes, implementation of integrated active-matrix driver circuit, the bonding of these components, the construction of electron optics, and the overall operation in the exposure system including the correction of possible aberrations. The experimental results of this mask-less parallel pattern transfer are shown in terms of simple 1:1 projection and parallel lithography under an active-matrix drive scheme. Another application is the use of this emitter as an active electrode supplying highly reducing electrons into solutions. A very small amount of metal-salt solutions is dripped onto the nc-Si emitter surface, and the emitter is driven without using any counter electrodes. After the emitter operation, thin metal (Cu, Ni, Co, and so on) and elemental semiconductors (Si and Ge) films are uniformly deposited on the emitting surface. Spectroscopic surface and compositional analyses indicate that there are no significant contaminations in deposited thin films. The implication is that ballistic hot electrons injected into solutions with appropriate kinetic energies induce preferential reduction of positive ions in solutions with no by-products followed by atom migration, nuclei formation, and the subsequent thin film growth. The availability of this technique for depositing thin SiGe films is also demonstrated by using a mixture solution. When patterned fine emission windows are formed on the emitter surface, metal and semiconductor wires array are directly deposited in parallel.
机译:使得在纳米硅(NC-Si)的弹道热电子源的特征的最佳使用,替代光刻技术基于这两种方法提出:在真空中和在溶液中的化学还原物理激发。纳米硅冷阴极是一种金属 - 绝缘体 - 半导体(MIS)二极管,薄金属膜,纳米硅层,n〜+ -Si基板,和欧姆背接触组成。下一个偏置条件下,高能电子被均匀并定向通过薄表面电极发射。在真空中,这种发射器可用于有源矩阵驱动的大规模并行光刻。排列100×100的发射器(每个尺寸:10×10微米〜2,间距:100微米)被制造通过常规平面工艺在硅衬底上,然后每发射器与其结合集成互补型金属氧化物半导体(CMOS)驱动器使用穿硅通孔(TSV)互连技术。电子多束选自器件发射的由微机电系统(MEMS)聚光透镜阵列聚焦并引入的加速系统的100的缩小因子的电子加速电压为5千伏。对目标的每个电子束着屏的设计尺寸为正方形10×10纳米〜2。这里我们讨论的发射器阵列与TSV孔,实施集成的有源矩阵驱动电路的制造过程中,这些部件的接合,电子光学器件的构造,并且在曝光系统包括可能的像差的校正的整体操作。此掩模较少平行图案转移的实验结果示于简单1的术语:1个投影和平行光刻下的有源矩阵驱动方案。另一个应用是使用这种发射器的作为活性电极提供高还原性电子到的解决方案。的金属的盐溶液极少量滴到纳米硅发射器表面,并且其发射极,而无需使用任何反电极驱动。发射器的操作,薄的金属(铜,镍,钴等)和元素半导体后(Si和Ge)薄膜均匀地沉积在发光表面上。分光表面和组成分析表明,有在沉积的薄膜没有显著污染。其含义是,弹道热电子注入到与适当的动能的解决方案引起的解决方案优先还原的正离子没有副产物,接着原子迁移,晶核形成和随后的薄膜生长。这种技术用于沉积薄的SiGe膜的可用性也可以通过使用混合溶液证明。当发射极表面,金属和半导体线阵列上形成的图案化细发射窗口被直接沉积在平行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号