首页> 外文会议>Conference on alternative lithographic technologies VII >Development of Ballistic Hot Electron Emitter and its Applications to Parallel Processing: Active-Matrix Massive Direct-Write Lithography in Vacuum and Thin Films Deposition in Solutions
【24h】

Development of Ballistic Hot Electron Emitter and its Applications to Parallel Processing: Active-Matrix Massive Direct-Write Lithography in Vacuum and Thin Films Deposition in Solutions

机译:弹道热电子发射体的开发及其在并行处理中的应用:真空中的有源矩阵大规模直接光刻技术以及溶液中的薄膜沉积

获取原文

摘要

Making the best use of the characteristic features in nanocrystalline Si (nc-Si) ballistic hot electron source, the alternative lithographic technology is presented based on the two approaches: physical excitation in vacuum and chemical reduction in solutions. The nc-Si cold cathode is a kind of metal-insulator-semiconductor (MIS) diode, composed of a thin metal film, an nc-Si layer, an n~+-Si substrate, and an ohmic back contact. Under a biased condition, energetic electrons are uniformly and directionally emitted through the thin surface electrodes. In vacuum, this emitter is available for active-matrix drive massive parallel lithography. Arrayed 100 × 100 emitters (each size: 10 × 10 μm~2, pitch: 100 μm) are fabricated on silicon substrate by conventional planar process, and then every emitter is bonded with integrated complementary metal-oxide-semiconductor (CMOS) driver using through-silicon-via (TSV) interconnect technology. Electron multi-beams emitted from selected devices are focused by a micro-electro-mechanical system (MEMS) condenser lens array and introduced into an accelerating system with a demagnification factor of 100. The electron accelerating voltage is 5 kV. The designed size of each beam landing on the target is 10 × 10 nm~2 in square. Here we discuss the fabrication process of the emitter array with TSV holes, implementation of integrated active-matrix driver circuit, the bonding of these components, the construction of electron optics, and the overall operation in the exposure system including the correction of possible aberrations. The experimental results of this mask-less parallel pattern transfer are shown in terms of simple 1:1 projection and parallel lithography under an active-matrix drive scheme. Another application is the use of this emitter as an active electrode supplying highly reducing electrons into solutions. A very small amount of metal-salt solutions is dripped onto the nc-Si emitter surface, and the emitter is driven without using any counter electrodes. After the emitter operation, thin metal (Cu, Ni, Co, and so on) and elemental semiconductors (Si and Ge) films are uniformly deposited on the emitting surface. Spectroscopic surface and compositional analyses indicate that there are no significant contaminations in deposited thin films. The implication is that ballistic hot electrons injected into solutions with appropriate kinetic energies induce preferential reduction of positive ions in solutions with no by-products followed by atom migration, nuclei formation, and the subsequent thin film growth. The availability of this technique for depositing thin SiGe films is also demonstrated by using a mixture solution. When patterned fine emission windows are formed on the emitter surface, metal and semiconductor wires array are directly deposited in parallel.
机译:充分利用纳米晶Si(nc-Si)弹道热电子源的特征,基于两种方法提出了替代光刻技术:真空中的物理激发和溶液中的化学还原。 nc-Si冷阴极是一种金属-绝缘体-半导体(MIS)二极管,由金属薄膜,nc-Si层,n〜+ -Si衬底和欧姆背触点组成。在偏置条件下,高能电子通过薄表面电极均匀而有方向地发​​射。在真空中,该发射器可用于有源矩阵驱动大规模并行光刻。通过常规的平面工艺在硅基板上制造100×100的阵列发射器(每个尺寸:10×10μm〜2,节距:100μm),然后将每个发射器与集成的互补金属氧化物半导体(CMOS)驱动器结合使用硅通孔(TSV)互连技术。从选定的设备发出的电子多束光束通过微机电系统(MEMS)聚光透镜阵列聚焦,并以100的缩小倍率引入加速系统。电子加速电压为5 kV。降落在目标上的每个光束的设计尺寸为10×10 nm〜2平方英寸。在这里,我们讨论了带有TSV孔的发射器阵列的制造过程,集成有源矩阵驱动器电路的实现,这些组件的结合,电子光学的构造以及曝光系统的整体操作,包括可能像差的校正。在有源矩阵驱动方案下,通过简单的1:1投影和并行光刻显示了这种无掩膜的并行图案转移实验结果。另一个应用是将该发射器用作将高还原电子供应到溶液中的有源电极。极少量的金属盐溶液滴在nc-Si发射极表面上,无需使用任何反电极即可驱动发射极。在发射极操作之后,薄金属(Cu,Ni,Co等)和元素半导体(Si和Ge)膜均匀地沉积在发射表面上。光谱表面和组成分析表明,沉积的薄膜中没有明显的污染。这意味着以适当的动能注入溶液中的弹道热电子会诱导溶液中正离子的优先还原,而没有副产物,随后原子迁移,原子核形成以及随后的薄膜生长。通过使用混合溶液也证明了该技术可用于沉积SiGe薄膜。当在发射极表面上形成图案化的精细发射窗口时,金属和半导体线阵列直接平行地沉积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号