首页> 外文会议>Assessment of the Tokyo Workshop >Evaluation of Self-propulsion and Energy Saving Device Performance Predictions for JBC
【24h】

Evaluation of Self-propulsion and Energy Saving Device Performance Predictions for JBC

机译:JBC自推进节能装置性能预测评估

获取原文

摘要

Self-propulsion cases for the JBC hull with and without an energy saving duct are analyzed in this chapter. Test cases are set up for self-propulsion condition at the ship point. No rudder is fitted in either case. About half of the submissions employ actual propeller models in which a propeller geometry is discretized using a moving mesh and the remainder uses body force models in which propeller effects are considered as a body force computed using external potential-flow based programs. Self-propulsion simulations are carried out in two ways. The first is to follow the self-propulsion test procedure in a towing tank and a propeller revolution rate is adjusted in such a way that propeller thrust and towing force or SFC (Skin Friction Correction) for the ship point condition are balanced with ship's resistance. The other way is to fix the propeller revolution rate equal to the experimental value and the force invariance is computed. Thrust and torque coefficients, propeller revolution and ship's resistance components in self-propulsion condition are items to be submitted. Analysis of grid uncertainty is carried out based on the submission data with multiple grids. Average of comparison errors and the standard deviations of propeller thrust and torque together with revolution rates are estimated using the towing tank test data of 7.0 m model. Self-propulsion factors are estimated using the submitted data and compared with the measured data. Finally, model scale delivered powers are used to evaluate overall accuracy of the current CFD analysis in terms of the prediction accuracy of energy saving duct performance.
机译:本章分析了有无节能导管的JBC船体的自推进情况。在船上为自推进条件设置了测试用例。两种情况下均不安装方向舵。大约一半的提交人采用了实际的螺旋桨模型,其中使用运动网格离散化了螺旋桨的几何形状,其余的则采用了体力模型,其中将螺旋桨效应视为使用基于外部势流的程序计算出的体力。自推进模拟以两种方式进行。首先是在拖曳油箱中遵循自推进测试程序,并以使船点状况下的螺旋桨推力和拖曳力或SFC(皮肤摩擦校正)与船的阻力平衡的方式调整螺旋桨的转速。另一种方法是将螺旋桨转速固定为等于实验值,然后计算力不变性。在自推进条件下的推力和扭矩系数,螺旋桨公转和船舶的阻力分量是必须提交的项目。网格不确定性的分析是基于具有多个网格的提交数据进行的。比较误差的平均值,螺旋桨推力和扭矩的标准偏差以及转速均使用7.0 m模型的拖油箱测试数据进行估算。使用提交的数据估算自推进因子,并将其与测量数据进行比较。最后,根据节能管道性能的预测准确性,模型规模的传递功率用于评估当前CFD分析的总体准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号