首页> 外文会议>International Conference on Man and Machine Interfacing >Soil type classification and mapping using hyperspectral remote sensing data
【24h】

Soil type classification and mapping using hyperspectral remote sensing data

机译:利用高光谱遥感数据进行土壤类型分类和制图

获取原文

摘要

Hyperspectral remote sensing has been widely used for mapping of soil, its classification and also its texture description. It is beneficial in urban and rural management. The present work reports the study regarding classification soil analysis using Support Vector Machine (SVM). Hyperion Hyperspectral satellite data with 10nm fine spectral resolution of Phulambri region of Aurangabad district of Maharashtra (India) which lies between 20° 06' N latitude and 75° 25' E longitude was used for soil classification. Gaussian Radial Basis Function (RBF) kernel of SVM was used to extract five various soils types and achieved overall accuracy of 71.18% and with Kappa Value of 0.57 having sufficient training samples. It was found that the soil of the region may be classified in five categories. The maximum area (51 %) was covered by the brown sandy soil, whereas the minimum (.02%) by gray clay soil. The result is of great significance for soil analysis of very complex region without reduction of dimensionality in satellite data.
机译:高光谱遥感已被广泛用于土壤测绘,分类和纹理描述。它对城乡管理有利。本工作报告了有关使用支持向量机(SVM)分类土壤分析的研究。 Hyperion Hyperion高光谱卫星数据具有10nm精细光谱分辨率,位于印度马哈拉施特拉邦奥兰加巴德地区Phulambri地区,位于北纬20°06'和东经75°25'之间,用于土壤分类。 SVM的高斯径向基函数(RBF)核用于提取五种不同的土壤类型,获得了71.18%的总体准确度,具有足够的训练样本的Kappa值为0.57。发现该地区的土壤可以分为五类。最大面积(51%)被棕色沙土覆盖,而最小面积(.02%)被灰色黏土覆盖。该结果对于不减少卫星数据维数的非常复杂区域的土壤分析具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号