首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >LARGE EDDY SIMULATION OF A HIGH PRESSURE TURBINE STAGE: EFFECTS OF SUB-GRID SCALE MODELING AND MESH RESOLUTION
【24h】

LARGE EDDY SIMULATION OF A HIGH PRESSURE TURBINE STAGE: EFFECTS OF SUB-GRID SCALE MODELING AND MESH RESOLUTION

机译:高压涡轮机阶段的大涡模拟:亚网格尺度建模和网格分辨率的影响

获取原文

摘要

The use of Computational Fluid Dynamics (CFD) tools for integrated simulations of gas turbine components has emerged as a promising way to predict undesired component interactions thereby giving access to potentially better engine designs and higher efficiency. In this context, the ever-increasing computational power available worldwide makes it possible to envision integrated massively parallel combustion chamber-turbomachinery simulations based on Large-Eddy Simulations (LES). While LES have proven their superiority for combustor simulations, few studies have employed this approach in complete turbomachinery stages. The main reason for this is the known weaknesses of near wall flow modeling in CFD. Two approaches exist: the wall-modeled LES, where wall flow physics is modeled by a law-of-the-wall, and the wall-resolved LES where all the relevant near wall physics is to be captured by the grid leading to massive computational cost increases. This work investigates the sensitivity of wall-modeled LES of a high-pressure turbine stage. The code employed, called TurboAVBP, is an in-house LES code capable of handling turbomachinery configurations. This is possible through an LES-compatible approach with the rotor/stator interface treated based on an overset moving grids method. It is designed to avoid any interference with the numerical scheme, allow the proper representation of turbulent structures crossing it and run on massively parallel platforms. The simulations focus on the engine-representative MT1 transonic high-pressure turbine, tested by QinetiQ. To control the computational cost, the configuration employed is composed of 1 scaled stator section and 2 rotors. The main issues investigated are the effect of mesh resolution and the effect of sub-grid scale models in conjunction with wall modeling. The pressure profiles across the stator and rotor blades are in good agreement with the experimental data for all cases. Radial profiles at the rotor exit (in the near and far field) show improvement over RANS predictions. Unsteady flow features, inherently present in LES, are, however, found to be affected by the modeling parameters as evidenced by the obtained shock strengths and structures or turbulence content of the different simulations.
机译:将计算流体动力学(CFD)工具用于燃气轮机组件的集成模拟已成为一种预测不希望有的组件相互作用的有前途的方法,从而使人们有可能获得更好的发动机设计和更高的效率。在这种情况下,世界范围内不断增长的计算能力使人们有可能设想基于大涡模拟(LES)的集成大型并行燃烧室-涡轮机械模拟。尽管LES已经证明了它们在燃烧器模拟中的优越性,但很少有研究在完整的涡轮机械阶段采用这种方法。主要原因是CFD中近壁流建模的已知缺点。存在两种方法:壁建模的LES,其中壁流物理模型通过壁定律建模;壁解析的LES,其中所有相关的近壁物理模型都将被网格捕获,从而导致大量计算成本增加。这项工作研究了高压涡轮级壁式LES的灵敏度。所使用的称为TurboAVBP的代码是内部LES代码,能够处理涡轮机械配置。这可以通过与LES兼容的方法来实现,其中转子/定子接口基于过度运动网格方法进行处理。它旨在避免对数值方案造成任何干扰,允许正确表示穿过它并在大规模平行平台上运行的湍流结构。仿真重点是由QinetiQ测试的代表发动机的MT1跨音速高压涡轮机。为了控制计算成本,采用的配置由1个按比例缩放的定子部分和2个转子组成。研究的主要问题是网格分辨率的影响以及子网格比例模型与墙建模的影响。定子和转子叶片上的压力分布与所有情况下的实验数据都非常吻合。转子出口(近场和远场)的径向轮廓显示出优于RANS预测。但是,发现固有存在于LES中的非稳态流动特征受建模参数的影响,这可以通过获得的不同模拟的冲击强度和结构或湍流含量来证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号