首页> 外文会议>ASME Internal Combustion Engine Division technical conference >PREDICTION OF FLAME BURNING VELOCITY AT EARLY FLAME DEVELOPMENT TIME WITH HIGH EXHAUST GAS RECIRCULATION (EGR) AND SPARK ADVANCE
【24h】

PREDICTION OF FLAME BURNING VELOCITY AT EARLY FLAME DEVELOPMENT TIME WITH HIGH EXHAUST GAS RECIRCULATION (EGR) AND SPARK ADVANCE

机译:高排气再循环(EGR)及火花提前预测早期火焰开发时间的火焰燃烧速度

获取原文

摘要

Diluting Spark-Ignited (SI) stoichiometric combustion engines with excess residual gas improves thermal efficiency, and allows spark to be advanced towards Maximum Brake Torque (MBT) timing. However, flame propagation rates decrease and misfires can occur at high Exhaust Gas Recirculation (EGR) conditions and advanced spark, limiting the maximum level of charge dilution and its benefits. The misfire limits are often determined for a specific engine from extensive experiments covering a large range of speed, torque and actuator settings. To extend the benefits of dilute combustion while at the misfire limit, it is essential to define a parameterizable, physics-based model capable of predicting the misfire limits, with cycle to cycle varied flame burning velocity as operating conditions change based on driver demand. A cycle averaged model is the first step in this process. The current work describes a model of cycle averaged laminar flame burning velocity within the early flame development period of 0 to 3 percent mass fraction burned. A flame curvature correction method is used to account for both the effect of flame stretch and ignition characteristics, in a variable volume engine system. Comparison of the predicted and the measured flame velocity was performed using a spark plug with fiber optical access. The comparison at a small set of spark and EGR settings at fixed load and speed, shows an agreement within 30% of uncertainty, while 20% uncertainty equals ± one standard deviation over 2,000 cycles.
机译:稀释具有过量残余气体的火花点火(Si)化学计量燃烧发动机可提高热效率,并允许火花朝向最大制动扭矩(MBT)定时。然而,火焰传播速率降低和失火可以在高排气再循环(EGR)条件下发生和先进的火花,限制最大电荷稀释水平及其益处。覆盖大型速度,扭矩和执行器设置的广泛实验,通常针对特定发动机确定失火限制。为了延长稀释燃烧的益处,同时在失火极限上,必须定义能够预测失误限制的可参数化的基于物理的模型,随着基于驾驶员需求的操作条件改变,循环变化的火焰燃烧速度。循环平均模型是此过程的第一步。目前的工作描述了循环模型平均的层状火焰燃烧速度,在早期火焰开发期内为0至3%的质量馏分燃烧。火焰曲率校正方法用于解释可变卷发动机系统中的火焰拉伸和点火特性的效果。使用具有光纤光学接入的火花塞进行预测和测量的火焰速度的比较。固定负荷和速度的一小组火花和EGR设置的比较显示了30%以内的不确定性,而20%的不确定性等于±1,000次循环的标准差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号