首页> 外文会议>ASME Internal Combustion Engine Division technical conference >PREDICTION OF FLAME BURNING VELOCITY AT EARLY FLAME DEVELOPMENT TIME WITH HIGH EXHAUST GAS RECIRCULATION (EGR) AND SPARK ADVANCE
【24h】

PREDICTION OF FLAME BURNING VELOCITY AT EARLY FLAME DEVELOPMENT TIME WITH HIGH EXHAUST GAS RECIRCULATION (EGR) AND SPARK ADVANCE

机译:在高烟气再循环(EGR)和火花提前的情况下预测火焰早期燃烧时的燃烧速度

获取原文

摘要

Diluting Spark-Ignited (SI) stoichiometric combustion engines with excess residual gas improves thermal efficiency, and allows spark to be advanced towards Maximum Brake Torque (MBT) timing. However, flame propagation rates decrease and misfires can occur at high Exhaust Gas Recirculation (EGR) conditions and advanced spark, limiting the maximum level of charge dilution and its benefits. The misfire limits are often determined for a specific engine from extensive experiments covering a large range of speed, torque and actuator settings. To extend the benefits of dilute combustion while at the misfire limit, it is essential to define a parameterizable, physics-based model capable of predicting the misfire limits, with cycle to cycle varied flame burning velocity as operating conditions change based on driver demand. A cycle averaged model is the first step in this process. The current work describes a model of cycle averaged laminar flame burning velocity within the early flame development period of 0 to 3 percent mass fraction burned. A flame curvature correction method is used to account for both the effect of flame stretch and ignition characteristics, in a variable volume engine system. Comparison of the predicted and the measured flame velocity was performed using a spark plug with fiber optical access. The comparison at a small set of spark and EGR settings at fixed load and speed, shows an agreement within 30% of uncertainty, while 20% uncertainty equals ± one standard deviation over 2,000 cycles.
机译:用过量的残留气体稀释火花点火(SI)的化学计量内燃机可提高热效率,并使火花提前至最大制动扭矩(MBT)正时。但是,在较高的废气再循环(EGR)条件和先进的火花下,火焰传播速率会降低,并且可能发生失火,从而限制了最大程度的装料稀释及其益处。通常根据涵盖大范围的速度,扭矩和执行器设置的大量实验来确定特定发动机的失火极限。为了扩展在不点火极限时稀燃的好处,至关重要的是定义一个可预测的,基于物理学的可参数化模型,该模型能够预测不点火极限,并随着操作条件根据驾驶员的需求而变化,从而使循环的火焰燃烧速度不断变化。周期平均模型是此过程的第一步。当前的工作描述了一个模型,该模型在燃烧的0至3%的质量分数的早期火焰发展阶段内,循环平均层流火焰燃烧速度。在可变容积发动机系统中,使用火焰曲率校正方法来考虑火焰伸展和点火特性的影响。使用带光纤通道的火花塞比较了预测的火焰速度和测量的火焰速度。在固定负载和速度下在一小组火花和EGR设置下进行的比较表明,在30%的不确定度内达成了一致,而20%的不确定度在2,000个周期内等于±一个标准偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号