首页> 外文会议>European corrosion congress;EUROCORR 2011 >Corrosion protection of copper by self-assembled monolayer of 4-amino-3-(octadecylthio)-6-methyl-1,2,4-triazinone
【24h】

Corrosion protection of copper by self-assembled monolayer of 4-amino-3-(octadecylthio)-6-methyl-1,2,4-triazinone

机译:4-氨基-3-(十八烷基硫基)-6-甲基-1,2,4-三嗪酮单层自组装膜对铜的腐蚀防护

获取原文

摘要

The self-assembled monolayer (SAM) of 4-amino-3-(octadecylthio)-6-methyl-1,2,4-triazinone (AOTMT) was formed on fresh copper surface at ambient temperature. The optimum conditions for formation of self-assembled monolayer (SAM) viz. pretreatment of copper surface, appropriate solvent, concentration of the organic molecule and immersion period have been established through electrochemical impedance and quartz crystal nanobalance studies. AOTMT SAM formed on copper surface was characterized by contact angle measurements, X-ray photoelectron spectroscopy (XPS), reflection absorption Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). It is inferred that formation of AOTMT SAM is through chemisorption of AOTMT on copper surface through nitrogen and subsequent complex formation between AOTMT and Cu~+ ions. Corrosion protection ability of AOTMT SAM was evaluated in dilute aqueous HCI solution at different concentrations (0.02 M - 0.20 M), at different immersion periods (0.5 h - 24 h) and at different temperatures (30 °C - 60 °C) using electrochemical impedance studies. AOTMT SAM is found to have excellent corrosion protection efficiency under all these conditions. Studies using electrochemical quartz crystal nanobalance (EQCN) showed an insignificant weight-loss of AOTMAT SAM modified copper in 0.02 M HCI environment. Potentiodynamic polarization studies revealed that this SAM controls the cathodic reaction. The stability of AOTMT SAM is confirmed by cyclic voltammetric studies. Weight-loss studies for an immersion period of 72 h in 0.02 M aqueous HCI also showed an inhibition efficiency of 91 %, which is in agreement with the results obtained from electrochemical studies. XPS spectra were used to investigate the change in the surface film of AOTMT SAM on copper in the presence of the corrosive environment. The XPS spectra revealed that there are no significant changes of intensities of peaks corresponding to various elements present in SAM after immersion in the corrosive environment. The AOTMT SAM acts as a densely packed layer, which prevents the underlying copper substrate from contact with the corrosive ions, thereby inhibiting corrosion of copper. The surface morphology of both bare copper and SAM covered copper is studied by scanning electron microscopy (SEM). Quantum chemical calculations were carried out in AM1 method. These calculations showed a greater negative charge on nitrogen atom in the fourth position of the triazinone ring. It is therefore suggested that this nitrogen is mainly involved in chemisorption of AOTMT on copper surface and subsequent complex formation. In the light of all the results, the mechanistic aspects of corrosion protection of copper by AOTMT SAM are discussed.
机译:在室温下,在新鲜的铜表面上形成了4-氨基-3-(十八烷基硫基)-6-甲基-1,2,4-三嗪酮(AOTMT)的自组装单层(SAM)。形成自组装单分子膜(SAM)的最佳条件。通过电化学阻抗和石英晶体纳米天平的研究,已经确定了铜表面的预处理,适当的溶剂,有机分子的浓度和浸泡时间。通过接触角测量,X射线光电子能谱(XPS),反射吸收傅里叶变换红外光谱(FTIR)和原子力显微镜(AFM)对形成在铜表面上的AOTMT SAM进行了表征。可以认为,AOTMT SAM的形成是通过AOTMT在铜表面上通过氮的化学吸附以及随后AOTMT与Cu〜+离子之间的络合物形成而实现的。使用电化学方法在不同浓度(0.02 M-0.20 M),不同浸泡时间(0.5 h-24 h)和不同温度(30°C-60°C)的稀HCl水溶液中评估AOTMT SAM的腐蚀防护能力阻抗研究。发现AOTMT SAM在所有这些条件下均具有出色的腐蚀防护效率。使用电化学石英晶体纳米天平(EQCN)进行的研究表明,在0.02 M HCl环境中,AOTMAT SAM改性铜的重量损失不明显。电位动力学极化研究表明该SAM控制阴极反应。循环伏安法研究证实了AOTMT SAM的稳定性。在0.02 M HCl水溶液中浸泡72小时的减肥研究也显示出91%的抑制率,这与电化学研究的结果一致。 XPS光谱用于研究在腐蚀环境下铜上AOTMT SAM的表面膜的变化。 XPS光谱显示,浸没在腐蚀性环境中后,与SAM中存在的各种元素相对应的峰强度没有明显变化。 AOTMT SAM充当致密层,可防止下面的铜基板与腐蚀性离子接触,从而抑制铜的腐蚀。通过扫描电子显微镜(SEM)研究了裸铜和SAM覆盖的铜的表面形态。量子化学计算是在AM1方法中进行的。这些计算表明在三嗪酮环的第四位氮原子上具有更大的负电荷。因此建议该氮主要参与铜表面上AOTMT的化学吸附和随后的络合物形成。根据所有结果,讨论了通过AOTMT SAM进行铜腐蚀防护的机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号