首页> 外文会议>ASME international heat transfer conference;IHTC14 >FREQUENCY-DOMAIN THERMOREFLECTANCE TECHNIQUE FOR MEASURING THERMAL CONDUCTIVITY AND INTERFACE THERMAL CONDUCTANCE OF THIN FILMS
【24h】

FREQUENCY-DOMAIN THERMOREFLECTANCE TECHNIQUE FOR MEASURING THERMAL CONDUCTIVITY AND INTERFACE THERMAL CONDUCTANCE OF THIN FILMS

机译:薄膜热导率和界面热导率的频域热反射技术

获取原文
获取外文期刊封面目录资料

摘要

The thermal conductivity of thin films and interface thermal conductance of dissimilar materials play a critical role in the functionality and the reliability of microano- materials and devices. The transient thermoreflectance methods, including the time-domain thermoreflectance (TDTR) and the frequency-domain thermoreflectance (FDTR) techniques are excellent approaches for the challenging measurements of interface thermal conductance of dissimilar materials. A theoretical model is introduced to analyze the TDTR and FDTR signals in' a tri-layer structure which consists of metal transducer, thin film, and substrate. Such a tri-layer structure represents typical sample geometry in the thermoreflectance measurements for the thermal conductivity and interface thermal conductance of thin films. The sensitivity of TDTR signals to the thermal conductivity of thin films is analyzed to show that the modulation frequency needs to be selected carefully for a high accuracy TDTR measurement. However, such a frequency selection is closely related to the unknown thermal properties and consequently hard to make before the measurement. Fortunately this limitation can be avoided in FDTR. Depending on the modulation frequency, the heat transport in such a tri-layer could be divided into three regimes based on the thickness of the film and the thermal penetration depth, the thermal conductivity of thin films and interface thermal conductance can be subsequently obtained by fitting different frequency regions of one FDTR measurement curve. FDTR measurements are then conducted along with the aforementioned analysis to obtain the thermal conductivity of SiO_2 thin films and interface thermal conductance SiO_2 and Si. FDTR measurement results agree well with the TDTR measurements, but promises to be a much easier implementation than TDTR measurements.
机译:薄膜的热导率和异种材料的界面热导率在微/纳米材料和设备的功能和可靠性中起着至关重要的作用。瞬态热反射方法,包括时域热反射(TDTR)和频域热反射(FDTR)技术,是对异种材料的界面热导进行挑战性测量的极佳方法。引入了一个理论模型来分析由金属换能器,薄膜和基板组成的三层结构中的TDTR和FDTR信号。这种三层结构代表了热反射率测量中用于薄膜热导率和界面热导率的典型样品几何形状。分析了TDTR信号对薄膜热导率的敏感性,显示出为高精度TDTR测量需要仔细选择调制频率。但是,这种频率选择与未知的热特性密切相关,因此很难在测量之前进行。幸运的是,可以在FDTR中避免此限制。根据调制频率,在这种三 根据薄膜的厚度和热穿透深度,可将薄膜层分为三个区域,随后通过拟合一条FDTR测量曲线的不同频率区域,可以获得薄膜的热导率和界面热导率。然后与上述分析一起进行FDTR测量,以获得SiO_2薄膜的热导率以及SiO_2和Si的界面热导率。 FDTR测量结果与TDTR测量非常吻合,但有望比TDTR测量更容易实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号