...
首页> 外文期刊>Journal of Applied Physics >Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films
【24h】

Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films

机译:用于测量薄膜的热导率和界面热导率的超快热反射技术

获取原文
获取原文并翻译 | 示例

摘要

The thermal conductivity of thin films and interface thermal conductance of dissimilar materials play a critical role in the functionality and the reliability of microanomaterials and devices. The ultrafast laser-based thermoreflectance techniques, including the time-domain thermoreflectance (TDTR) and the frequency-domain thermoreflectance (FDTR) techniques are excellent approaches for the challenging measurements of interface thermal conductance of dissimilar materials. Both TDTR and FDTR signals on a trilayer structure which consists of a thin film metal transducer, a target thin film, and a substrate are studied by a thermal conduction model. The sensitivity of TDTR signals to the thermal conductivity of thin films is analyzed to show that the modulation frequency needs to be selected carefully for a high precision TDTR measurement. However, such a frequency selection, which is closely related to the unknown thermal properties and consequently hard to make before TDTR measurement, can be avoided in FDTR measurement. We also found out that in FDTR method, the heat transport in a trilayer structure could be divided into three regimes, and the thermal conductivity of thin films and interface thermal conductance can be obtained subsequently by fitting the data in different frequency range of one FDTR measurement, based on the regime map. Both TDTR and FDTR measurements are then conducted along with the analysis to obtain the thermal conductivity of SiO_2 thin films and interface thermal conductance between SiO_2 and Si. FDTR measurement results agree well with the TDTR measurements, but promises to be a much easier implementation than TDTR measurements.
机译:薄膜的热导率和异种材料的界面热导率在微/纳米材料和设备的功能和可靠性中起着至关重要的作用。基于超快激光的热反射技术,包括时域热反射(TDTR)和频域热反射(FDTR)技术,是对异种材料的界面热导进行挑战性测量的极佳方法。通过热传导模型研究了由薄膜金属换能器,目标薄膜和衬底组成的三层结构上的TDTR和FDTR信号。分析了TDTR信号对薄膜热导率的敏感性,表明对于高精度TDTR测量,需要仔细选择调制频率。但是,在FDTR测量中可以避免与未知热特性密切相关的频率选择,因此很难在TDTR测量之前进行。我们还发现,在FDTR方法中,三层结构中的热传递可以分为三种状态,然后通过将数据拟合在一个FDTR测量的不同频率范围内,可以随后获得薄膜的热导率和界面热导率。 ,基于政权地图。然后进行TDTR和FDTR测量,并进行分析,以获得SiO_2薄膜的热导率以及SiO_2和Si之间的界面热导率。 FDTR测量结果与TDTR测量非常吻合,但有望比TDTR测量更容易实现。

著录项

  • 来源
    《Journal of Applied Physics 》 |2010年第9期| p.094315.1-094315.8| 共8页
  • 作者单位

    Department of Mechanical Engineering, University of Colorado at Boulder, Colorado 80309, USA,Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;

    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;

    Department of Mechanical Engineering, University of Colorado at Boulder, Colorado 80309, USA;

    Department of Mechanical Engineering, University of Colorado at Boulder, Colorado 80309, USA;

    Department of Mechanical Engineering, University of Colorado at Boulder, Colorado 80309, USA;

    Department of Mechanical Engineering, University of Colorado at Boulder, Colorado 80309, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号